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Abstract—We consider epidemic-style information dissemina-
tion strategies that leverage the nonuniformity of host distribution
over subnets (e.g., IP subnets) to optimize the information spread.
Such epidemic-style strategies are based on random sampling of
target hosts according to a sampling rule. In this paper, the
objective is to optimize the information spread with respect to
minimizing the total number of samplings to reach a target
fraction of the host population. This is of general interest for
the design of efficient information dissemination systems and
more specifically, to identify requirements for the containment
of worms that use subnet preference scanning strategies.

We first identify the optimum number of samplings to reach
a target fraction of hosts, given global information about the
host distribution over subnets. We show that the optimum can
be achieved by either a dynamic strategy for which the per host
sampling rate over subnets is allowed to vary over time or by a
static strategy for which the sampling over subnets is fixed. These
results appear to be novel and are informative about (a) what
best possible performance is achievable and (b) what factors
determine the performance gain over oblivious strategies such
as uniform random scanning. We then consider several simple,
online sampling strategies that require only local knowledge,
where each host biases sampling based on its observed sampling
outcomes and keeps only O(1) state at any point in time. Using
real datasets from several large-scale Internet measurements, we
evaluate the significance of the factors revealed by our analytical
results on the sampling efficiency.

I. INTRODUCTION

We consider the problem of reaching a target fraction of
an initially unknown population of hosts by using epidemic-
style information dissemination. We make the assumption that
the nodes of the population take identities from a large space
(such as the space of IPv4 addresses), and that two nodes
communicate only when one of them discovers the other by
random probing. Initially, the information to be disseminated
exists in few nodes which use random probing to discover
more nodes. Discovered nodes also initiate a random probing
process to further propagate the information. In this work,
we describe optimum static and dynamic strategies, as well
as local sub-optimal strategies to efficiently disseminate the
information to a given fraction of the population.

If this “information” corresponds to worm-like malicious
software, the problem transforms to characterizing the perfor-
mance of worm propagation strategies. In this case, we are
interested in characterizing the minimum number of scans
that a worm needs to infect a target fraction of suscepti-
ble machines; such knowledge is of value to designers of
worm countermeasures. In general, however, epidemic-style
information dissemination is of interest in a plethora of areas
ranging from web-service membership management [1], to
database maintenance [2], and streaming broadcasting [3].
In such systems, information dissemination is assisted by
the underlying structure of the network (e.g., p2p overlays).
However, it is of theoretical interest and practical value to
understand whether the information in such systems can be
efficiently disseminated without the support of an underlying
network, when the population of the system and its distribution

Fig. 1. The setting under consideration: strategies for efficient
sampling of hosts that are distributed over different groups.

across the dissemination network are unknown a-priori. This
is consistent for example with trying to reach hosts, a large
fraction of which connect to the Internet through dynamic
IPs [4], ergo resulting in high population variability over time
and IP space.

Specifically, to design efficient information dissemination
strategies we take into advantage the non-uniformity of host
distribution over subnets. In particular, we assume that hosts
are partitioned into groups or subnets such as IP address blocks
or subnets defined by Autonomous Systems (ASes) (see for
example Fig. 1). Our goal is then to minimize the samplings
required to reach a predetermined fraction of hosts without any
prior knowledge of their group partitioning, and only requiring
the minimum amount of state possible.

We first examine the case where perfect global knowledge
of the host distribution over subnets exists. We find that the
optimum in this context may be achieved by either a static or
a dynamic strategy, where surprisingly both strategies can be
described by the same formula. Our analysis provides insights
about the best possible performance that can be achieved. We
show that while the selection of the right target set of subnets is
crucial to achieve the optimum, further sampling optimization
within this target set only bears minimal benefits.

While it may be argued that the knowledge required by the
optimum strategy (i.e., the distribution of hosts over subnets)
can be estimated through various sources such as, for example,
intrusion detection systems, BGP tables or even reports of
infected hosts from earlier worm attacks, we present evidence
that such an inference might not be as straightforward. Using
a set of diverse real Internet measurements, we highlight that
different datasets provide distinct viewpoints of the Internet
topology, stressing the need for sampling strategies that require
no prior knowledge of subnet partitioning, but instead they
are able to deduce this information online. Motivated by this
finding, we propose simple strategies that bias their sampling
based on previous sampling attempts using just O(1) state.

Our contributions can be summarized in the following
points:
•We describe the optimum static and dynamic strategies to
minimize the number of samplings required to reach a target
fraction of the host population (Sec. III-A and IV-A). Note
that these appear to be novel results.
•We propose and evaluate simple local strategies (Sec. V)



that require no prior knowledge of the host distribution over
subnets, and yet significantly outperform uniform random
scanning as well as local-subnet preference strategy.
• Using Internet measurement datasets, we evaluate and pro-
vide insights regarding the factors that determine the per-
formance of the optimal and the sub-optimal strategies. We
further highlight that different datasets provide distinct per-
spectives of the Internet topology both across the measurement
traces, but also across time within the same trace (Sec. VI).

To the best of our knowledge, our work is the first to fully
describe the optimum with respect to minimizing the number
of samplings required to reach a fraction of hosts. While
subnet preference sampling has been analyzed earlier [5] and
the objective of minimizing samplings has been identified as
important also in previous work [6], the authors there restricted
themselves to studying sub-optimal strategies.

II. ASSUMPTIONS AND NOTATION

We first introduce the notation that we use in the remainder
of the paper. We denote the size of the total address space
with Ω (e.g., for IPv4, Ω = 232). The address space is divided
into J subnets with subnet j having an address space of size
Ωj . We will refer to the hosts that received the information
item of our dissemination system as infected hosts and those
that are interested in receiving the information items but have
not yet received it as susceptible hosts. This nomenclature
is commonplace in the literature. The number of hosts in
a subnet j that are interested in the information item is
denoted with Nj with N defined as the total number of hosts
(i.e., N =

∑J
j=1Nj). We denote with Ij(t) the number

of infected hosts in subnet j at time t. Similarly, we let
Sj(t) = Nj − Ij(t) be the number of susceptible hosts in
subnet j at time t. The quantities nj , ij(t) and sj(t) are
the normalized versions defined as follows: nj = Nj/N ,
ij(t) = Ij(t)/N , and sj(t) = Sj(t)/N . We denote with i(t)
and s(t) the total fraction of infected and susceptible hosts,
respectively, i.e. i(t) =

∑J
j=1 ij(t) and s(t) =

∑J
j=1 sj(t).

Also, let ωj = Ωj/Ω be the fraction of the total address space
occupied by the jth subnet. Without of loss of generality, we
assume that subnets are enumerated such that

S1(0)

Ω1
≥ S2(0)

Ω2
≥ · · · ≥ SJ(0)

ΩJ
≥ 0 (1)

and S1(0)/Ω1 > 0.
We let η be the rate at which an infected host samples the

address space for a susceptible host. Without loss of generality,
we assume that η = 1. In the most general setting, at time t,
an infected host in a subnet i decides to sample a node in a
subnet j with probability pij(t). Once it chooses subnet j, it
samples an address lying in subnet j’s address space uniformly
at random and then initiates a contact to this address. Let β be
the density of hosts, i.e., β = N

Ω . Define βij(t) = β 1
ωj
pij(t).

We consider the many host limit where the total number of
hosts N tends to be large while the following parameters are
held fixed N/Ω, Ωj/Ω, and ij(0), j = 1, 2, . . . , J . Under
assumption that each host initiates samplings at instances of
a Poisson process with rate 1, the infected host population is
described by a Markov process indexed with N . The host
population frequencies converge with N uniformly on any
compact time interval to the solution of the following system
of ordinary differential equations (e.g., see Kurtz [7]), for

j = 1, . . . , J ,

d

dt
ij(t) =

(
J∑

i=1

βij(t)ii(t)

)
sj(t) (2)

with sj(t) = nj − ij(t).
Given the density of hosts over subnets nj and initial

placement of infected hosts ij(0), seeking for an optimal
sampling strategy is equivalent to finding the functions βij(t),
t ≥ 0. The optimal strategy β∗ would depend on the imposed
constraints, such as, for example, for static subnet preference
that β∗ is time invariant. βij will depend only on j if one does
not allow the nodes to (a) scan their subnet faster (although
in this case the above model is not correct since η depends
on source-destination pair) and (b) have privileged information
about their subnet. In that case, essentially all the subnets have
the same subnet sampling bias.

In the sequel, we will denote with u(t) the total number of
samplings per host by time t, i.e.

u(t) =
∫ t

0

i(x)dx. (3)

III. STATIC SUBNET PREFERENTIAL SAMPLING

We consider a class of sampling strategies for which the
subnet preference probabilities are fixed in time. For this
subset of sampling strategies, Eq. (2) boils down to:

d

dt
ij(t) = βji(t)sj(t) (4)

From Eq. (4), it follows

ij(u) = nj − sj(0)e−
pj
ωj

u
, j = 1, 2, . . . , J (5)

where u(t), t ≥ 0, is given by u(0) = 0 and

d

dt
u(t) = 1−

J∑
j=1

sj(0)e−
pj
ωj

u(t)
, t ≥ 0. (6)

Note that the time dynamics of infected host population over
subnets, for any static sampling strategy, is entirely described
by Eq. (5) and Eq. (6).

We briefly revisit the uniform random sampling, the well
known S-I epidemics, which we will use as a reference
throughout the paper as it is a commonplace sampling rule
used in practice. Note that with uniform random sampling
pj = ωj , i.e. a subnet j is sampled proportional to the address
space size of the subnet j. Uniform random sampling is easy
to analyze, for example, note that

s(u) = s(0)e−βu, u ≥ 0. (7)

We will see later in the paper that for real-life distributions of
hosts over subnets, the uniform random sampling is grossly
inefficient compared with an optimal strategy with respect to
minimising the number of samplings for a given target fraction
of infected hosts. The following preliminary result charac-
terises the class of static sampling strategies by comparison
to uniform random sampling; proof in Appendix A.



Proposition 1 The set of static sampling strategies is char-
acterised as follows: (a) For any static sampling strategy
specified by the subnet preference distribution p such that∑J

j=1 pj
Sj(0)
Ωj

S(0)
Ω

< 1

the total fraction of infected hosts is smaller than under the
uniform random sampling, for any given fraction of samplings
u ≥ 0, i.e.

ip(u) < iω(u), for all u > 0 (8)

where ip(u) and iω(u) are the total fractions of infected hosts
under static sampling p and uniform random sampling ω,
respectively.

(b) For any subnet preference distribution p such that pj <
ωj for some subnet j with sj(0) > 0,

ip(u) < iω(u), for some u > 0. (9)

Item a identifies a sufficient condition under which a static
sampling strategy p is less efficient than the uniform random
sampling. These are sampling strategies that in the average
sense bias to sampling of rare subnets. Item b entails that any
static sampling strategy other than uniform random sampling
over a set of subnets with each containing susceptible hosts is
worse than uniform random sampling over this set of subnets
for some total fraction of samplings u. In the next section,
we identify optimal static sampling strategy that in the case
of nonuniformly dense subnets requires smaller number of
samplings than uniform random sampling, for a given target
fraction of infected hosts.

A. Optimal Static Strategy

In this section, we identify the optimal static sampling
strategy that minimises the total number of samplings to
reach a given fraction of infected hosts i0. We show that
the static strategy OPT-STATIC, specified by the following
subnet preference probabilities is optimal:

OPT-STATIC
Each infected host scans a subnet j with probability:

pj =

 α ωj log

 sA
j (0)

ωA
j

1− i0−i(0)∑
k∈A sk(0)

 j ∈ A

0 j /∈ A

(10)

where α is the normalization constant and A is the set of
subnets {1, 2, . . . , J ′} with

J ′ = max

{
j :

sj(0)
ωj

>

∑j
k=1 sk(0)− (i0 − i(0))∑j

k=1 ωk

}
.

In the above description, we use the definitions, for a subset
of subnets A,

sA
j (0) =

sj(0)∑
k∈A sk(0)

and ωA
j =

ωj∑
k∈A ωk

, j ∈ A.

The strategy specifies to sample a set A of initially densest
subnets. The necessary condition for a set A to be optimal
is that the initial density of susceptibles in every subnet in
A must be larger than the final density of susceptibles in A.
Indeed, if we target the set A then after target infection is
reached, the final density of susceptibles in A is given by 1∑

j∈A Sj(t0)∑
j∈A Ωj

=

∑
j∈A Sj(0)− (I0 − I(0))∑

j∈A Ωj

where t0 is the time when the fraction of infected hosts i0 is
reached. Furthermore, note that if a subnet j is in the target
set A, all subnets whose initial density of susceptibles is larger
than the initial density of susceptibles in j are also in A.
Lastly, note that the strategy does not necessarily target the
smallest densest set of subnets. One may need to target a
larger set because even though that it may slow the initial
phase, the density of susceptibles will still be sufficient as
infection reaches target infection. Finally, note that in Eq. (10)
the subnet preference probability for a subnet that is in the
target set A is an expression containing a term logarithmic in
the initial density of this subnet.

The next result establishes that OPT-STATIC is optimal
over all static sampling strategies.

Theorem 2 For any given target fraction of infected hosts,
the strategy OPT-STATIC is optimal in minimising the total
number of samplings over all static sampling strategies. The
total number of required samplings for a target fraction of
infected hosts i0 is given by

uSTA(i0, A) = 1
β

(∑
j∈A ωj

)[
log

(
1

1− i0−i(0)∑
k∈A sk(0)

)
−D(ωA||sA(0))

]
where D(·||·) denotes Kullback-Liebler (KL) distance.2

Proof: See Appendix B.
What does this tell us? We compare the required total

number of samplings of the optimal static strategy to uniform
random sampling. We first note the following easy result:

Proposition 3 Under uniform random sampling of a subset of
subnets A, we have that the per host total number of required
samplings for a target fraction of infected hosts i0 is given by

uUNI(i0, A) =
1
β

∑
j∈A

ωj

 log

 1

1− i0−i(0)∑
j∈A sj(0)

 .

We note that the required total number of samplings for OPT-
STATIC differs from that of the uniform random sampling
only in the KL term D(·), presuming that both strategies target

1In addition, at the end of the infection, all subnets in the target set will
have equal density of susceptible nodes.

2Kullback-Liebler distance between two probability measures p and q is
defined by D(p||q) :=

∑
i p(i) log(p(i)/q(i)).



the set A specified by OPT-STATIC. The KL term measures
the deviation between the initial susceptible host population
sizes sj(0) and the subnet address space sizes ωj over subnets
in the target set. In particular, if the address sizes of subnets
are equal, then the KL measures the deviation of sj(0) from
the uniform distribution on the target set A. Note that

D(ωA||sA(0)) = log
(
AωA(ρ(0))
GωA(ρ(0))

)
where ρj(0) := sj(0)/ωj is the density of a subnet j,
AωA(ρ(0)) and GωA(ρ(0)) are the arithmetic and geometric
means, respectively.

AωA(ρ(0)) =
∑
j∈A

ωj∑
k∈A ωk

ρj(0)

GωA(ρ(0)) =
∏
j∈A

ρj(0)
ωj∑

k∈A ωk .

Indeed, we have that D(ωA||sA(0)) > 0 unless all subnets
are of same density, i.e., si(0)/ωi = sj(0)/ωj , for all
i, j ∈ A (elementary property of means, Hardy, Littlewood,
and Pólya [9, Section 2.5]).

The question of interest is how significant is the KL term in
Theorem 2 relative to the logarithmic term therein. If the KL
term is insignificant relative to the logarithmic term, then this
suggests that provided that one identifies the target set A, then
simple uniform random sampling over the set A would yield
nearly-optimal performance. Furthermore, it is of interest to
evaluate how critical is the selection of the target set on the
resulting total number of samplings. We will address these
questions in Section VI.

IV. DYNAMIC SAMPLING STRATEGIES

In this section we consider strategies for which subnet
preference probabilities are allowed to vary over time.

A. Optimal dynamic strategy

We now consider what optimal performance can be achieved
over the entire set of feasible sampling strategies. A priori, it
may not be clear whether enlarging the set of strategies from
static to dynamic will yield better performance. We show here
that the answer is no. The following scheme is optimal over
the entire set of dynamic sampling strategies:

OPT
At any point in time t with the subset of densest subnets
S(t), each infected host samples uniformly at random an
address over the address space of subnets S(t).

The optimality of this strategy would appear to be very
intuitive. The strategy was claimed to be optimal in [6],
however, we are unaware of a proof in the literature that shows
that this is indeed an optimal strategy. We also characterize the
host evolution for this strategy, which we later use to compare
with sub-optimal strategies.

Theorem 4 OPT has the following properties:

1) The strategy is optimal in that at any point of its
execution the fraction of infected hosts is maximised.

2) For any given target fraction of infected hosts i0, the
total number of samplings is given by the relation in
Theorem 2.

3) For the total number of samplings u ≥ 0, the fraction
of susceptible hosts is given by, for un−1 ≤ u < un

s(u) =
J∑

j=n+1

sj(0) +

 n∑
j=1

ωj

Gne
− β∑n

j=1 wj
u

(11)

where

Gn =
n∏

j=1

(
sj(0)
ωj

) ωj∑n
k=1 ωk

and u0 = 0 with

un =

∑n
j=1 ωj

β
log

 Gn

sn+1(0)
ωn+1

 (12)

for n = 1, 2, . . . , J − 1, and uJ = +∞.

Proof: Proof in Appendix C.
The result entails the following corollary:

Corollary 5 For any given target fraction of infected hosts
i0, there exists a static sampling strategy that achieves the
smallest possible total number of samplings to infect the
fraction of hosts i0 over all dynamic sampling strategies. This
static sampling strategy is OPT-STATIC.

See Appendix D for a discussion of this result.
We end this sub-section with a comparison with uniform

random sampling.

Corollary 6 For uniform random sampling, we have

1) With the target fraction of infected hosts going to 1, the
total number of samplings is asymptotically optimal.

2) In the prevailing limit, the fraction of susceptible hosts
under uniform random sampling and optimal satisfy

lim
u→+∞

sUNI(u)
sOPT (u)

= eD(ω||s(0)) (13)

where D(ω||s(0)) is the Kullback-Lieber deviation be-
tween (ω1, . . . , ωJ) and (s1(0), . . . , sJ(0)).

Item 1 is rather intuitive. Let i0 = 1 − 1/N be the fraction
where all but one host are infected. Then, from Theorem 4, we
have that the log term is logarithmic in N while the KL term
is a constant, thus asymptotically negligible. Item 2 follows
directly from Theorem 4, Proposition 3, and the fact Eq. (7).



B. Proportional Sampling: A Sub-Optimal Dynamic Strategy
The optimal strategies discussed so far would in many cases

be difficult to implement as they require global knowledge
about densities of susceptible hosts over subnets. In particular,
the optimal static strategy requires knowing initial densities of
susceptible hosts over subnets while the dynamic optimum
strategy requires knowing the subset of densest subnets at
any point in time during its execution. In this section, we
consider a sampling strategy that is based on sampling a
subnet proportional to the density of susceptible hosts in this
subnet. It follows from the analysis below that, in general,
proportional sampling is a sub-optimal strategy. It is not clear,
though, how far is the proportional sampling from optimal for
distributions of hosts over subnets in practice; we investigate
this in Section VI. We next characterise a strategy that uses a
mixture of uniform random sampling over the entire address
space and sampling proportional to the density of susceptibles
per subnet. The strategy is specified by a parameter 0 ≤ q ≤ 1
denoting the probability that a host is sampling a subnet
proportional to the number of susceptible hosts in this subnet.

PROP
An infected host with probability q samples a subnet pro-
portional to the current number of susceptible hosts in
this subnet, or else samples a subnet by uniform random
sampling of the entire address space.

It turns out that under strategy PROP the fraction of
susceptible hosts for any given total number of samplings
u ≥ 0 is given in a simple analytical form:

Theorem 7 The fraction of susceptible hosts in a subnet j is
given by

sj(u) = sj(0)
e−β(1−q)u

1 + sj(0)
ωj

ψ(u)
(14)

where ψ is the implicit function∑
k∈A+

ωk log
(

1 +
sk(0)
ωk

ψ(u)
)

= βqu. (15)

where A+ is the set that contains all initially non-empty
subnets, i.e. A+ = {j : sj(0) > 0}.

Proof (in Appendix F) shows that in fact the dynamics under
the PROP policy is entirely described by a scalar differential
equation for ψ and that the evolution of the susceptible hosts
in a subnet j is given by the function of ψ given in the
theorem. This is of computational convenience when dealing
with systems of many subnets such as in the Internet (e.g.,
65536 IP /16 subnets).

The result entails the following lower bound:

s(u) ≥

∑
j∈A+

ωj
1

1 + ωj

sj(0)
e−βqu−D(ω||s(0))

GJe
−βu

which is tight for large u. Indeed, in view of Eq.(11) is
asymptotically optimal, for large u (unlike uniform random
sampling; see Corollary 6).

V. SAMPLING STRATEGIES THAT USE ONLY LOCAL
KNOWLEDGE

In this section, we consider sampling strategies that are local
in that each host biases its sampling over subnets based purely
on the observed successes and failures of its own samplings.
Moreover, we confine our attention to strategies that at any
time keep state of only a fixed number of subnets with respect
to the total number of subnets in the system. We consider
several sampling strategies and describe their dynamics by
differential systems. This enables our numerical evaluations
in Section VI.

A. Local Subnet Preference

We first consider the well-known local subnet preference
strategy (e.g., used by CodeRed-II worm), defined as follows:

LOC-PREF
A infected host in a subnet j, with probability qj , samples
an address uniformly over the address space of the subnet
j, or else it samples an address uniformly over the entire
address space.

This strategy can be seen as a dynamic sampling strategy
specified by the following subnet preference probabilities

pj(t) = ωj

(
1−

J∑
k=1

qkvk(t)

)
+ qjvj(t) (16)

where vj(t) := ij(t)/
∑J

k=1 ik(t).

B. K-FAIL Strategy

We next consider another strategy that biases to subnets
from which hosts observe successful samplings. With this
strategy, each host keeps a counter for at most 1 subnet
(candidate subnet). The system-wide configuration parameter
is K ≥ 1. The strategy is described as follows:

K-FAIL

1) Initially (at time 0), infected hosts use uniform random
sampling.

2) When a host that performs uniform random sampling,
successfully samples a host in a subnet j, it sets its
candidate subnet to the subnet j, and continues to
sample uniformly at random over the address space
of its candidate subnet until K consecutive sampling
failures.

3) When a host becomes infected, it sets its candidate
subnet to that of the host that infected this host and
continues to use uniform random sampling over the
address space of its candidate subnet until encounter-
ing K consecutive sampling failures.

4) When a host encounters K consecutive sampling fail-
ures over its candidate subnet, it switches to uniform
random sampling; go to item 2.

We are unaware of a dissemination system in practice that
uses this strategy. The strategy is perhaps closest related to



the Zotob family of worms that used similar but different
strategy. With some Zotob worms, an infected host starts with
scanning its local subnet until K consecutive failures, and then
switches to and remains indefinitely a uniform random scanner.
Instead, K-FAIL strategy sticks to a subnet from which it
successfully samples a susceptible host and may switch over
between uniform random sampling mode and sticking to a
subnet mode. We next describe dynamics of K-FAIL strategy.
Each infected host is in one of K states: 0 denoting the state
in which host performs uniform random sampling, or state k
where K − k denotes the number of successive failures that
the host already incurred, k = 1, . . . ,K. We denote with r0
the fraction of infected hosts that are in state 0 and with rj,k
the fraction of infected hosts in a subnet j that are in state
k. The dynamics of the system is entirely described by the
following differential equations:

d

dt
sj = −β

(
ωjr0 +

K∑
k=1

rj,k

)
sj

ωj

d

dt
r0 =

J∑
i=1

ri,1

(
1− β

si

ωi

)
− (1− q)r0β

J∑
i=1

si

d

dt
rj,k = −rk,j + rk+1,j

(
1− β

sj

ωj

)
, 1 ≤ k < K

d

dt
rj,K = −rj,K + 2

(
r0βsj + β

sj

ωj

K∑
k=1

rj,k

)
.

The equations capture the transitions of host states (see
Fig. 9). We use this system in our numerical evaluations in
Section VI.

C. Subnet Preference Strategy

We consider subnet preference sampling strategy where
each host maintains a candidate set of at most some fixed
number K ≥ 1 of subnets. Each host splits its effort to
sampling subnets from its candidate set and uniform random
sampling.

Again, we are unaware of a system that uses this strategy.
It appears natural to consider strategies for which each host
keeps a (small) list of subnets and uses sorting strategies of
the candidate subnets in the list, such as for example, move-to-
front sort heuristic, in order to bias its sampling to subnets at
the head of the list. We instead consider the below introduced
K-FAIL strategy that keeps no order of the items in the list for
ease of analysis. Indeed, for the candidate set of size at most 1,
i.e. K = 1, the two schemes are equivalent. In this case, it can
be considered as a generalization of local subnet preference
sampling by letting the preference subnet not to be fixed to
local subnet but to change to subnets from which the host
observes successful samplings. The strategy is introduced in

the following, where 0 ≤ q < 1 is a configuration parameter.

K-CANDSET

1) Init: infected hosts set their candidate sets according
to a policy (default: empty set).

2) With probability q, a host samples a subnet by picking
uniformly at random from its candidate set.

3) Otherwise, the host samples by uniform random sam-
pling of the entire address space. If the sampling to
a subnet k is successful and subnet k is not in the
candidate set of this host, the following happens:

a) If the candidate set of this host is smaller than
K, then subnet k is added to the candidate set,

b) else, the subnet k replaces a subnet from the
candidate set, evicted uniformly at random.

4) A host infected by an instigator host, inherits the
candidate set of the instigator host (the candidate set
of the instigator updated after successful sampling of
this host).

The dynamics of the above described sampling strategy
is entirely specified by the following system of ordinary
differential equations. In order to keep the notation simple,
we display equations only for the special case K = 1, but
note that similar equations are easily derived for the general
case. Let rk denote the fraction of infected hosts of type k,
i.e., those with the candidate set {k} and let r0 denote the
fraction of hosts of type 0, i.e., with empty candidate set.

d

dt
sj = −β

(
(1− q)ωj

J∑
k=0

rk + q (ωjr0 + rj)

)
sj

ωj

d

dt
r0 = −r0

J∑
k=1

βsk

d

dt
rj = 2(1− q)

(
J∑

k=1

rk

)
βsj + 2βr0sj

+rj

(
qβ

sj

ωj
− (1− q)

J∑
k=1

βsk

)
.

Again, we will use these equations to derive our numerical
results in Section VI.

VI. EXPERIMENTAL RESULTS

In this section we perform an extensive evaluation of the
strategies described throughout sections III- V. We first outline
the set of analysed datasets which cover diverse Internet
measurements reflecting the distributions of IP addresses over
the IP space (section VI-A). We then examine the factors
that determine the dynamics of the optimum strategy (sec-
tion VI-B ) and finally we evaluate the performance of the
proposed strategies that require no side knowledge about the
distribution of hosts over subnets (section VI-C).

A. Datasets

Our datasets consist of measurement traces of IP addresses.
We aggregate IPs into groups or subnets of various sizes such



Fig. 2. Subnet density for all datasets.

as for example /8 and /16 subnets, or into groups based on
Autonomous Systems (AS). Without loss of generality we will
use /16 subnet groups for the remainder of the paper unless
otherwise specified. Throughout our evaluation, we make use
of the following datasets:3

•WU : The dataset refers to IIS logs collected at the Windows
Update system [10]. In our experiments we will use the 117
million IP addresses observed during the first day of the
measurement. (Populated /16s: 17503.)
•Hotmail : The dataset consists of approximately 103 million
IP addresses which were observed over a period of three
months from logs of user-logins at the Hotmail service [4].
(Populated /16s: 13135.)
•DShield : The dataset consists of roughly 7.6 million IP
addresses that were collected by a set of firewall and intrusion
detection systems provided by DShield [11] and were used
in [12] and [13]. This dataset may contain spoofed source IP
addresses. (Populated /16s: 22861.)
•Witty : A list of IPs (roughly 55 thousands) corresponding
to hosts spreading the Witty worm provided by CAIDA [14].
(Populated /16s: 5271.)

Fig. 2 presents the density of hosts in /16 subnets as seen in
each of our datasets. Density here refers to the fraction Nj/N ,
while the x-axis presents to the rank of each subnet with
respect to its density (i.e., x = 1 refers to a densest subnet).
Note that while overall the shapes of the curves appear similar,
densities of distinct subnets appear quite different across the
datasets. We will extensively examine these differences in the
following section, as they significantly impact the performance
of the sampling strategies, e.g. the selection of the target set
A described in section III-A.

B. Optimal strategy evaluation

We first examine the factors that affect the total number
of samplings for the optimal sampling strategy. Note that
in Theorem 2 we found that the total number of samplings
per susceptible host depends on the logarithmic and the KL

3Due to space limitations results will be presented for only some datasets
interchangeably. Our findings however apply to all datasets.
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Fig. 3. Logterm vs. KL term in the four datasets. The KL term does
not appear to be significant.

10-4 10-2 10010-4

10-2

100

102

104

Final fraction of sampled hosts

Sa
mp

lin
gs

 pe
r  h

os
t

Witty

 

 

opt
rnd
rndopt

10-4 10-2 10010-4

10-3

10-2

10-1

100

101

102 WU

 

 

opt
rnd
rndopt

Fig. 4. Optimal strategy (opt) vs. uniform random scanning of the
target set (rnd) and the optimal set of densest subnets (rndopt). All
curves fall on top of one another.

term therein. We now examine the significance of these two
individual factors. This is of interest as if it turns out that the
KL term can be neglected relative to the logarithmic term, then
the implication is that simple uniform random sampling of the
target set A would already be near-optimal and fine-tuning of
the subnet preference probabilities may not be needed. Fig. 3
specifically examines these two factors in the four datasets as
the fraction of infected hosts i0 grows. Indeed, in all cases
we observe that the KL term is several orders of magnitude
smaller than the logarithmic term, especially in the larger
datasets for smaller i0. Furthermore, while for the DShield and
Witty datasets the KL term appears larger for a range of values
for small i0, this is only a side-effect of the smaller number
of IP addresses in these datasets and does not reflect true
operational regions (e.g., for i0 = 10−6 in the witty dataset
there are no hosts to be infected since the total number of IP
addresses is roughly 55 thousand).

The above observation suggests that optimization of scan-
ning rates over subnets of the optimal target set yields in-
significant or moderate gain compared to simply using uniform
random scanning over the optimal target set. This claim
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Fig. 6. Examples of employing a non-optimal target set with a
prior distribution. TOP: Prior distribution: DShield. True: Hotmail.
BOTTOM: Prior distribution: WU. True: Hotmail.

is further validated by Fig. 4 which compares the optimal
strategy vs. uniform random sampling within the target set
and uniform random sampling on the smallest set of densest
subnets that covers the target fraction of infected hosts (rnd
and rndopt curves in the figure). Fig. 4 clearly highlights
that all curves fall on top of one another, stating that these
strategies perform similarly if the optimal target set has been
well identified.

However, the choice of the target set is critical with respect
to the total number of samplings, since a poor choice of the
target set A may have a dramatic impact on the required
number of samplings to reach a target fraction of the host
population. To evaluate the discrepancy from the optimal
strategy with a poor choice of A, we perform the following
experiment. For a given target fraction of infected hosts i0,
we augment the optimal target set A∗ by adding subnets

in decreasing order of their densities, and we then examine
the incurred penalty. For example, if the optimum target set
is A∗ = {1, 2, . . . , j}, we define sets A as A∗ ∪ {j + 1},
A∗ ∪ {j + 1, j + 2}, etc. In our evaluations, we enlarge the
target set by a factor k, i.e. k = |A|

|A∗| . This effect is shown
in Fig. 5(left) where for various i0 of the WU dataset, we
show the ratio of the number of samplings by uniform random
sampling of the set A to that of uniform random sampling of
the optimum target set A∗ vs. the target fraction of infected
hosts. For reference, Fig. 5(right) presents the size of the
optimal target set A∗ and the minimum possible set of subnets
to cover a given fraction of the target host population. We
observe that as i increases, the penalty factor becomes quite
significant especially when i is larger than 1% (e.g., to reach
roughly 14% of the population, a tenfold increase of the target
set, will produce 5 times more samplings). When i is small
augmenting the target set size does not incur a high penalty,
since i is already reachable by the densest sets already in A∗.
Fig. 5 also shows that the penalty increases roughly linearly
with k for a given i.

The criticality of the target set is also highlighted when the
optimal static sampling strategy is configured using a prior
distribution of hosts over subnets, and then applied over a
host population following a different distribution. We compare
the final fraction of sampled hosts when the above strategy
is applied to a) the population distributed according to the
prior distribution, and b) a population distributed according
to another ”true” reference distribution. This could be seen
as having imperfect knowledge about the true distribution,
which can result in using a non-optimal target set A. Fig. 6
presents the results of two such experiments: when using
DShield as a prior and Hotmail as the true distribution, and
using WU as a prior and Hotmail as the true distribution For
reference, we also plot the cumulative fraction of hosts for
the true distribution residing in the subnets corresponding to
the densest subnets in the prior distribution with a given total
fraction of population. Fig. 6 highlights that the discrepancy
with respect to the optimal is significant.

How sub-optimal might the target set A be having partial
knowledge? There are two important factors which determine
how useful a prior distribution might be:

1. The fraction of the population in the true distribution
for which the corresponding subnets in the prior are empty.
The importance of this fact is highlighted when comparing
Hotmail vs. Dshield. Approximately 30% of Hotmail hosts
reside in subnets which are empty in the DShield data set
(x = 1, y = 0.7 top right plot in Fig. 6). This implies that
when using DShield as a prior for Hotmail, we can never reach
more than 70% of WU’s population.

2. The difference in distribution of hosts among the
populated subnets. The importance of this fact is highlighted
when using WU vs. Hotmail. In both cases, approximately
10% of hosts in one data set reside in subnets which are
empty in the other data set. However, the curves comparing the
distributions look drastically different. The plot of Hotmail’s
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Fig. 7. Comparing the densest subnets across the datasets and across time.

Fig. 8. The impact of the group size on the KL term and the
samplings under the optimal strategy.

distribution in the densest WU subnets as a function of
cumulative fraction of hosts in WU is almost a straight line and
very close to y = x (Fig. 6, bottom, right). Thus, using WU as
a prior for Hotmail performs better than using DShield; yet,
the other way round (i.e., using Hotmail as a prior for WU)
does not (plot omitted due to space limitations but is similar
to Fig. 6, top) .

To further examine the difference between the distributions
according the various datasets, we compare the analysed
traces by examining the fraction of common densest subnets
within the set of top-k densest subnets for each distribution.
Fig. 7 presents the extent to which the densest subnets vary
from one distribution to another by pairwise comparing the
datasets. Similarly, Fig. 7(right) presents the same result but
for different time viewpoints for the WU dataset where timing
information is available. Surprisingly, the discrepancy appears
to be substantial. For example, for k = 10 the sets of the
10 densest subnets of the WU and the Hotmail distributions
have only one subnet in common, while no common subnets
exists when considering the DShield distribution! While the
densest subnets across time for the same distribution appear
to be more stable the discrepancy may still be nontrivial. These
observations clearly raise the problem of accurately estimating
the true subnet distribution in the Internet.

Finally we consider the impact of host partitioning in
subnets on performance of the optimal strategy. To this extent,
Fig. 8 presents the KL term and the number of samplings

under the optimal strategy for various subnet definitions of the
WU trace. Specifically, IP addresses are grouped to /n subnets,
with n ranging from 8 to 20. We find that while grouping
does not appear to have a significant effect on the KL term,
the number of sampling increase as the groups become larger
(i.e., n smaller). (This is expected from our analytical results
as splitting subnets into sub-subnets indeed enlarges the set
over which the optimisation is done.) This effect highlights
that smaller groupings appear more attractive since effort will
be concentrated in small populated subnets, in contrast to
performing redundant samplings in large subnets which would
be a lot sparser in general, but this may add to the complexity
of identifying the optimum target set of subnets.

C. Sub-optimal strategies

Here, we examine the performance of our proposed strate-
gies with respect to the optimal and the uniform random
sampling strategies. We start by studying proportional sam-
pling (PROP section F) in Fig 9(left), where we plot PROP
(with q = 0.95) vs the optimal (OPT) and uniform random
sampling (RND) for all datasets. In all cases, PROP follows
closely the optimal. This is an interesting property as it suggest
that already proportional sampling brings us very close to the
optimal and may inform design of online sampling strategies.

Similarly, Fig 9(middle) and Fig 9(right) show the per-
formance of sampling strategies that only take advantage
of local knowledge (section V) for the WU dataset. For
reference, we also present the optimal, uniform random and
PROP strategies. Fig 9(right) zooms in a particular range of
Fig 9(middle) for small i. From these figures we can make the
following observations for this specific dataset:
• Local subnet preference strategies perform close to (RND)
for small q (local sampling probability). For larger q this
strategy appears to suffer from persistently sampling exhausted
subnets especially for larger i, thus performing close to (RND)
or worse, while showing better performance for small i(u).
• K-FAIL appears to consistently outperform all other local
strategies and asymptotically follows the optimal strategy.
• CANDSET (with q = 0.95) appears to suffer from similar
issues with the local preference strategy, by persisting to scan
subnets that have been exhausted.



Fig. 9. The fraction of sampled hosts i(u) vs. the number of samplings u for sub-optimal strategies. LEFT: Proportional sampling. MIDDLE:
Local-knowledge strategies. RIGHT: Zooming in middle figure for small i(u). For the results in the graphs LEFT, the initial fraction of
infected hosts is i(0) = 10−5 residing in a subnet with the largest number of hosts. For the results in the graphs MIDDLE and RIGHT,
the distribution of hosts over subnets is for the /8 address subspace 4.0.0.0 with the initial fraction of infected hosts i(0) = 1.0128 10−5

residing in a subnet with the largest number of hosts.

• For smaller i (Fig 9, right), we see that both CANDSET
and K-FAIL perform very close to the optimal (up to roughly
i = 0.1). Note however, that i = 0.1 for the WU dataset
corresponds to a substantial number of hosts (over 10 million).

Overall, all our proposed strategies perform significantly
better than uniform random sampling and local subnet prefer-
ence strategy in the majority of the cases.

VII. CONCLUDING REMARKS

This paper studies the problem of epidemic-style infor-
mation dissemination using random sampling. We identify
optimal static and dynamic strategies to reach a target fraction
of the host population in minimum number of samplings.
We also propose and evaluate simple strategies that use no
prior information and constant state, and provide significant
gain. Future work may further investigate the space of simple
strategies that perform near optimal.
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APPENDIX

A. Proof of Proposition 1

Item a. From Eq. (5), we have

ip(u) = 1−
J∑

j=1

sj(0)e−β
pj
ωj

u
.

Hence,
iω(u) = 1− s(0)e−βu.

Eq. (8) thus can be rewritten as

J∑
j=1

sj(0)e−
pj
ωj

u
> s(0)e−u, for all u > 0.

By Jensen’s inequality, the latter condition is implied by the
following condition

e−αu > e−u, for all u > 0, (17)



where

α :=
J∑

j=1

pj

ωj

sj(0)
s(0)

.

Condition Eq. (17) indeed holds for α < 1.
Item b. Condition Eq. (9) can be rewritten as

J∑
j=1

sj(0)
s(0)

e
−

(
pj
ωj
−1

)
u
> 1, for some u > 0. (18)

Under the assumption that pj < ωj for some j with sj(0) > 0,
we have that the left hand side in Eq. (18) goes to infinity as
u goes to infinity. It follows that the inequality in Eq. (18)
indeed holds for some u > 0.

B. Proof of Theorem 2

For a given target fraction of infected hosts i0, the problem
to solve is

OPT-STATIC(i0)
minimise u

over βj ≥ 0, j = 1, 2, . . . , J

subject to 1−
J∑

j=1

sj(0)e−βju = i0 (19)

J∑
j=1

ωjβj = β (20)

Recall the definition βj := (β/ωj)pj . Constraint Eq. (19)
requires that the target fraction of the infected hosts is the
given i0. This follows from Eq. (19) and the fact i = du/dt.
Constraint Eq. (20) is equivalent of

∑J
j=1 pj = 1, that is at

each host sampling a subnet is targeted.
We use the method of Lagrangian multipliers. The Lagrange

function is

L(u,β, µ, λ,γ) = u− µ
(
1−

∑J
j=1 sj(0)e−βju − i0

)
−λ
(∑J

j=1 ωjβj − β
)
−
∑J

j=1 γjβj

Setting ∂L(u,β,µ,λ,γ)
∂βj

= 0 gives

µusj(0)e−βju + λωj + γj = 0.

The complementary slackness conditions γjβj = 0, j =
1, 2, . . . , J yield the following condition:

βj

(
µusj(0)e−βju + λωj

)
= 0.

Let A be the set of subnets for which βj 6= 0 and Ā its
complement. Then, since γj = 0 for j ∈ A

0 =
∑
j∈A

µusj(0)e−βju + λωj

= µu(1− i0 −
∑
k∈Ā

sk(0)) + λ
∑
j∈A

ωj

or,

µu

−λ
=

∑
j∈A ωj

1− i0 −
∑

k∈Ā sk(0)
.

Therefore, the optimal solution is

βj =
1

u(A)
log

[
(sj(0)/ωj)

(∑
k∈A ωk

)
1− i0 −

∑
k∈Ā sk(0)

]
(21)

for j ∈ A, and βj = 0, for j ∈ Ā, where

u(A) = 1
β

[∑
k∈A ωk log sk(0)

ωk
−

−
(∑

k∈A ωk

)
log
(∑

k∈A sk(0)−(i0−i(0))∑
k∈A ωk

)]
.

(22)

The asserted subnet preference probabilities in Eq. (10)
follow. From Eq. (22), the asserted optimal number of sam-
plings in the theorem follows after some elementary algebra.
It remains to show that the optimal target set A is the one
asserted under OPT-STATIC policy. To that end, note that A
is a valid solution only if for all j ∈ A,

sj(0)
ωj

>
1− i0 −

∑
k∈Ā sk(0)∑

k∈A ωk
.

This condition is equivalent to:

Sj

Ωj
≥
∑

k∈A Sk(0)− (I − I(0))∑
k∈A Ωk

. (23)

In other words, we only target those subnets whose initial
density of susceptible hosts is larger than the collective density
of susceptible hosts (among these subnets only) at the end of
infection.

It is only left to prove that the target subset is the largest set
satisfying Eq. (23). Let ρk := Sk(0)/Ωk, Φk = {1, 2, . . . , k}
and

ρΦJ′ =
S1 + S2 + · · ·+ SJ′ − (I0 − I(0))

Ω1 + Ω2 + · · ·+ ΩJ′
. (24)

Let ΦJ′ and ΦJ′+1 both satisfy condition Eq. (23) and uJ′

and uJ′+1 be the number of samplings when targeting J ′ and
J ′ + 1 densest subnets, respectively.

Then,

uJ′+1 − uJ′ =
1
β

ωJ′+1 log(ρJ′+1) +

 J′∑
k=1

ωk

 log(ρΦJ′ )

−

J′+1∑
k=1

ωk

 log(ρΦJ′+1
)

 .
From Eq. (24), note thatJ′+1∑

k=1

ωk

 ρΦJ′+1
= ωJ′+1ρJ′+1 +

 J′∑
k=1

ωk

 ρΦJ′ .

From the last equation and Jensen’s inequality, it follows
that uJ′+1 ≤ uJ′ , where equality holds only if ρJ′+1 = ρΦJ′ .
This completes the proof.



C. Proof of Theorem 4

We first provide a general characterisation of optimal sam-
pling strategy (Lemma 8). We then characterise the sampling
strategy OPT, which shows items 2 and 3 of the theorem.
Finally, we use Lemma 8 and the obtained characterisation of
the sampling strategy OPT to show that OPT is optimal, which
shows item 1 of the theorem and completes the proof.

1) Characterisation of optimal dynamical strategy: Let
πj(u) be the cumulative number of samplings directed to a
subnet j by the total number of samplings u ≥ 0, i.e.

πj(u) =
∫ u

0

pj(x)dx

where with an abuse of notation, we denote with pj(x) the
fraction of samplings directed to a subnet j for the total
number of samplings x ≥ 0.

Note that
J∑

j=1

πj(u) = u, all u ≥ 0. (25)

Let sπ
j (u) be the fraction of susceptible hosts in a subnet j

when the total number of samplings is u ≥ 0 under a sampling
strategy specified by π, and let sπ(u) :=

∑J
j=1 s

π
j (u) be the

total fraction of susceptible hosts in the system at the number
of samplings u. We also use the definition

GA :=
∏
k∈A

(
sk(0)
ωk

) ωk∑
m∈A ωm

for any given nonempty subset of subnets A.

Lemma 8 Any optimal sampling strategy specified by π∗

satisfies

π∗j (u) =

{
ωj∑

k∈A(u) ωk
u+ rj(A(u)) j ∈ A(u)

0 else
(26)

where

rj(A) :=
ωj

β
log

 sj(0)
ωj

GA

 (27)

and A(u) denotes the set of subnets for which πj(u) > 0, i.e.
A(u) = {j : πj(u) > 0}.

Remark. Note that any π satisfying Eq. (26) indeed satisfies
Eq. (25).

Proof: From Eq. (2)–(3), we obtain

sπ
j (u) = sj(0)e−

β
ωj

πj(u)
, u ≥ 0,

for j = 1, 2, . . . , J . Hence, the fraction of the susceptible hosts
in the system is described as follows

sπ(u) =
J∑

j=1

sj(0)e−
β

ωj
πj(u)

, u ≥ 0.

Optimal dynamic sampling is specified by π∗(u) that for
any given u ≥ 0 solves the following problem:

OPT(u)

minimise
J∑

j=1

sj(0)e−
β

ωj
πj

over π ≥ 0

subject to
J∑

j=1

πj = u.

Note that a sampling strategy that solves the above problem
for any u ≥ 0 is indeed an optimal dynamic strategy. To that
end, let Π(u) be the set of feasible sampling strategies, i.e.

Π(u) =

f : [0, u] → RJ
+ :

J∑
j=1

fj(x) = x, x ∈ [0, u]

 .

Note that for any given u ≥ 0, π∗ ∈ Π(u) is an optimal
dynamic strategy if for any π ∈ Π(u):

sπ∗(u) ≤ sπ(u). (28)

Note that for any given target fraction of the infected hosts
i0, π∗ ∈ Π(+∞) is indeed optimal as it requires the smallest
number of samplings to reduce the fraction of susceptible hosts
to 1− i0.

By standard method of Lagrange multipliers, it follows that
the solution of OPT(u) is as asserted in the lemma.

D. Characterisation of the sampling strategy OPT

By definition of the strategy OPT it is readily seen that there
exists the total number of samplings 0 = u0 ≤ u1 ≤ u2 ≤
· · · ≤ uJ−1 < uJ = ∞ such that

s1(un−1)
ω1

= · · · = sn(un−1)
ωn

=
sn(0)
ωn

(29)

sj(un−1)
ωj

=
sj(0)
ωj

, j = n, n+ 1, . . . , J. (30)

That is, at the total number of samplings un−1: (a) subnet
densities sj(un−1)/ωj for j ≤ n are balanced and equal to
sn(0)/ωn, and (b) sj(un−1)/ωj for j ≥ n are equal to their
respective initial subnet densities. For example, if in Eq. (1)
the inequalities are strict, then 0 = u0 < u1 < · · · < uJ−1 <
uJ = +∞. In this case, the strategy OPT targets subnet 1 for
the number of total scans [0, u1), then targets subnets 1 and 2
for the number of total scans [u2, u3) and so on.

For OPT, we have that for un−1 ≤ u < un,

d

du
sj(u) = −αnsj(u), j ≤ n (31)

d

du
sj(u) = 0, j > n (32)

where

αn :=
β∑n

k=1 ωk
.



From Eq. (31)–(32), it follows that for un−1 ≤ u < un,

sj(u) =
{
sj(un−1)e−αn(u−un−1) j ≤ n
sj(0) j > n.

(33)

It follows

sj(un) =
{
sj(0)e−

∑n
k=j αk(uk−uk−1) j ≤ n

sj(0) j > n.

In particular,

sn(un)
sn(0)

= e−αn(un−un−1).

Now, from Eq. (29)–(30),

sn(un)
ωn

=
sn+1(0)
ωn+1

.

Combining the last two displays, we have

un − un−1 =
1
αn

log
(

sn(0)/ωn

sn+1(0)/ωn+1

)
. (34)

Summing up, we obtain un as written in Eq. (12).
We proceed with determining the fraction of susceptible

hosts s(u) under strategy OPT. From Eq. (33), we obtain for
un−1 ≤ u < un

s(u) =
J∑

j=n+1

sj(0) +
n∑

j=1

sj(un−1)e−αn(u−un−1).

Using in the last equation the fact from Eq. (29)–(30),

sj(un−1)
ωj

=
sn(0)
ωn

, j ≤ n,

we obtain

s(u) =
J∑

j=n+1

sj(0) +
n∑

j=1

ωj
sn(0)
ωn

e−αn(u−un−1). (35)

Now, one readily can check that

eαnun−1 =
ωn

sn(0)
Gn, (36)

where Gn is defined in the theorem. To see this, note from
Eq. (34),

eαnun−1 =
sn+1(0)ωn

ωn+1sn(0)
eαnun .

Then, in the last equation plug-in the fact from Eq. (12),
eαnun = Gn/(sn+1/ωn).

From Eq. (35) and Eq. (36), we obtain the expression
asserted in Eq. (11). This shows item 3 of the theorem.

Item 2 follows from Eq. (11) of the item 3 in the theorem
by setting s(u) = 1− i0 and inverting Eq. (11) to the explicit
function u(i0). The target set is {1, 2, . . . , n} where n is the
largest integer n ≥ 1 such that

∑n
j=1 sj(un−1) ≥ 1− i0.

1) OPT is optimal: We show that OPT satisfies the condi-
tions in Lemma 8.

Let B(u) denotes the set of target subnets by strategy OPT
for the number of samplings u, i.e.

B(u) = {1, 2, . . . , n}, for un−1 < u ≤ un

where the sequence un is defined by Eq. (12).
By definition of OPT,

πj(u) = ωj

∫ u

0

1j∈B(x)∑
k∈B(x) ωk

dx

for j = 1, 2, . . . , J . It follows that for un−1 < u ≤ un,

πj(u) = ωj

(
uj − uj−1∑j

k=1 ωk

+ · · ·+ un−1 − un−2∑n−1
k=1 ωk

+
u− un−1∑n

k=1 ωk

)
,

for j ∈ B(u), and, else πj(u) = 0. By plugging Eq. (34), we
obtain that for j ∈ B(u),

πj(u) =
ωj∑n

k=1 ωk
u+

ωj

β

log

 sj(0)
ωj

sn(0)
ωn

− un−1∑n
k=1 ωk

 .

Now, substituting un−1 using Eq. (12), we obtain that π
satisfies Eq. (26) of Lemma 8 with A(u) ≡ B(u).

It remains only to check that indeed j ∈ B(u) if and only
if πj(u) > 0. Using Eq. (26), condition j ∈ B(u) if and only
if πj(u) > 0 can be rewritten as:

sj(0)
ωj

> Gne
− β∑n

j=1 ωj
u

for all j = 1, 2, . . . , n and all un−1 < u ≤ un. This is
equivalent to,

sn(0)
ωn

> Gne
− β∑n

j=1 ωj
(u−un−1)

,

for all un−1 < u ≤ un. Substituting un−1 using Eq. (12),
after some simple algebra we obtain

1 > e
− β∑n

j=1 ωj
(u−un−1)

which is indeed true for any u such that un−1 < u ≤ un.

E. Remark on the optimality of OPT-STATIC

We briefly discuss the finding that optimal static sampling
strategy OPT-STATIC achieves the smallest possible number
of samplings over all dynamic sampling strategies for a given
target fraction of infected hosts (Corollary 5). Let u0 be the
total number of samplings for the target fraction of infected
hosts i0 under sampling strategy OPT-STATIC. In order to
show that OPT-STATIC satisfies Eq. (26) of Lemma 8 we
need to check that

p∗ju
0 = π∗j (u0) for all j ∈ A

where A is the target set of subnets and (p∗j , j ∈ A) is the
OPT-STATIC subnet preference probability distribution under



the sampling strategy OPT-STATIC. This is verified as follows.
Using Eq. (26), the last display can be rewritten as

p∗ju
0 =

ωj∑
k∈A ωk

u0 +
ωj

β
log

 sj(0)
ωj∏

k∈A

(
sk(0)
ωk

) wk∑
m∈A ωm

 .

Now, note from Eq. (21),

p∗ju
0 =

ωj

β
log

 sj(0)
ωj

1−i0−
∑

k∈Ā sk(0)∑
k∈A ωk

 . (37)

Combining the two last displays, we obtain Eq. (22), thus
Eq. (37) indeed holds. This shows that OPT-STATIC verifies
the conditions of Lemma 8 for the given target fraction of
infected hosts i0.

F. Proof of Theorem 7

The time evolution of susceptible hosts over subnets under
sampling strategy PROP with parameter 0 ≤ q ≤ 1 is given
by the following system of ordinary differential equations:

d

dt
sj(t) = βi(t)

(
(1− q)ωj + q

sj(t)
s(t)

)
sj(t)
ωj

(38)

for j = 1, 2, . . . , J .
Let us define

vj(t) =
sj(t)
ωjs(t)

.

Note that the sampling strategy PROP is a dynamic sampling
strategy specified by the following subnet preference proba-
bilities:

pj(t) = ωj (1− q + qvj(t)) . (39)

With our new notation, from Eq. (38), it follows

d

du
sj(t) = −βωj (1− q + qvj(t)) vj(t)s(t). (40)

By some simple calculus, we have that vj’s evolve as
follows

d

dt
vj(t) = βq

(
J∑

k=1

ωkvk(t)2 − vj(t)

)
vj(t). (41)

We next use the fact that the last differential equation
is a generalised logistic differential equation and recall the
following result [16]:

Lemma 9 Consider a generalised logistic equation

d

dt
y(t) = α(a(t)− y(t))y(t)

where a(t) is a real-valued function for which A(t) =∫ t

0
a(x)dx < +∞, for all t ≥ 0. We have

y(t) = y(0)
eαA(t)

1 + αy(0)
∫ t

0
eαA(x)dx

, t ≥ 0.

Now note that Eq. (41) is indeed a generalised logistic
equation with α = βq and a(t) =

∑J
k=1 ωkvk(t)2. From

Eq. (40), we obtain

d

du
log(s) = −β

(
1− q + q

J∑
k=1

ωkv
2
k

)
Integrating it follows

βqA(u) = −β(1− q)u− log
s(u)
s(0)

.

Using this identity and Lemma 9, we obtain

sj(u) = sj(0)
e−β(1−q)u

1 + βq
sj(0)
ωj

ψ(u)
. (42)

with
ψ(u) := βq

∫ u

0

1
s(x)

e−β(1−q)xdx, u ≥ 0. (43)

Summing up over j in Eq. (42), we obtain

s(u)eβ(1−q)u =
J∑

j=1

ωj

sj(0)
ωj

1 + sj(0)
ωj

ψ(u)
.

Furthermore, from Eq. (43), note

d

du
ψ(u) = βq

1
s(u)

e−β(1−q)u.

From the last two displays, it follows

J∑
j=1

ωj

d
(
1 + sj(0)

ωj
ψ(u)

)
1 + sj(0)

ωj
ψ(u)

= βqdu.

Integrating both sides of the last equation, we arrive to
Eq. (15). In view of Eq. (42), this completes the proof.
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