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Abstract. We derive the first performance guarantees for a combina-
torial online algorithm that schedules stochastic, nonpreemptive jobs on
unrelated machines to minimize the expectation of the total weighted
completion time. Prior work on unrelated machine scheduling with stochas-
tic jobs was restricted to the offline case, and required sophisticated lin-
ear or convex programming relaxations for the assignment of jobs to
machines. Our algorithm is purely combinatorial, and therefore it also
works for the online setting. As to the techniques applied, this paper
shows how the dual fitting technique can be put to work for stochastic
and nonpreemptive scheduling problems.

1 Introduction

The scheduling of jobs on multiple, parallel machines is a fundamental problem
both in combinatorial optimization and systems theory. There is a vast amount of
different model variants as well as applications, which is testified by the existence
of the handbook [18]. A well studied class of problems is scheduling a set of n
nonpreemptive jobs that arrive over time on m unrelated machines with the
objective of minimizing the total weighted completion time. Here, unrelated
machines refers to the fact that the matrix that describes the processing times
of all jobs on all machines can have any rank larger than 1. The offline version
of that problem is denoted R | rj |

∑
wjCj in the three-field notation of Graham

et al. [8], and it has always been a cornerstone problem for the development of
new techniques in the design of (approximation) algorithms, e.g. [4, 11, 17, 29].

We here address the online version of that problem with stochastic jobs.
Online means that jobs arrive over time, and the set of jobs is unknown a priori.
With respect to online models in scheduling, we refer to [13, 26] for pointers to
relevant work. In many systems, the scheduler may not know the exact processing
times of jobs upon arrival. Different approaches have been introduced to cope
with this uncertainty. If jobs can be preempted, then non-clairvoyant schedulers
have been studied that do not know the processing time of the jobs until the job
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is completed [25, 5, 15, 9, 12]. Unfortunately, if preemption is not allowed then
any algorithm has poor performance in the non-clairvoyant model, as the lower
bound for approximability is Ω(n).

That suggests that the non-clairvoyant model is perhaps too pessimistic.
Even though exact processing times may be unknown, it is not unrealistic to
assume that at least an an estimate of the true processing times is available.
For such systems, a model that is used is stochastic scheduling. In the stochastic
scheduling model the job’s processing times are given by random variables. A
non-anticipatory scheduler only knows this random variable Pj that encodes the
possible realizations of job j’s processing time. If the scheduler starts a job on
a machine, then that job must be run to completion non-preemptively, and it is
only when the job completes that the scheduler learns the actual processing time.
Both the scheduler and the optimal solution are non-anticipatory, which roughly
means that the future is uncertain for both, the scheduler and the adversary.
Stochastic scheduling has been well-studied, including fundamental work such
as [22, 23] and approximation algorithms, e.g. [24, 31, 20, 30, 28].

This paper considers online scheduling of non-preemptive, stochastic jobs in
an unrelated machine environment to minimize the total weighted completion
time.This paper addresses the same problem as [20], however not for identical
machines, but for the most general, unrelated machines model. In the stochastic
unrelated machine setting, that means that the scheduler is given a probability
distribution of a job’s processing time which is machine-dependent, and there
need not be any correlation between the jobs’ processing time distributions on
different machines.

When all machines are identical, perhaps the most natural algorithm is
Weighted Shortest Expected Processing Time (WSEPT) first, which always as-
signs a job with the maximum ratio of weight over expected size when a machine
is free. With unit weights, this boils down to greedily scheduling jobs according
to smallest expected size, or SEPT. When there is a single machine, WSEPT is
optimal [27]. Further, in the case were job sizes are deterministic and arrive at
the same time, SEPT is optimal [10]. In the identical machines setting, SEPT
is optimal if job sizes are exponentially distributed [6, 34], or more generally,
are stochastically comparable in pairs [33]. Some extensions of these optimality
results to the problem with weights exist as well [16]. However for more general
distributions, simple solutions fail [32], and our knowledge of optimal scheduling
policies is limited.

For this reason, approximation algorithms have been studied. With the no-
table exception of [14], all approximation algorithms have performance guaran-
tees that depend on an upper bound ∆ on the squared coefficient of variation of
the underlying random variables. Möhring, Schulz and Uetz [24] established the
first approximation algorithms for the problem via the first linear programming
relaxation for stochastic scheduling. Their work gave a (3 + ∆)-approximation
when jobs are released over time (yet offline), and they additionally showed that

WSEPT is a (3+∆)
2 -approximation when jobs arrive together5. These results have

5 The ratio is slightly better, but for simplicity we ignore the additive Θ(1/m) term.



been built on and generalized in several settings [31, 21, 20, 32, 30, 28], notably
in [20] for the online setting. The currently best known result when jobs are
released over time (yet offline) is a (2 +∆)-approximation by Schulz [28]. In the
online setting [28] gives a (2.309 + 1.309∆)-competitive algorithm. These results
build on an idea from [7] to use a preemptive, fast single machine relaxation,
next to the relaxation of [24]. The work of Im, Moseley and Pruhs[14] gave the
first results independent of ∆ showing that there exist poly-logarithmic approx-
imation algorithms under some assumptions. All these papers address problems
with identical machines.

For some 15 years after the results of [24] for the identical machines case, no
non-trivial results were known for the unrelated machines case despite being a
major target in the area. Recently Skutella et al. [30] gave a 3+∆

2 -approximation
algorithm when jobs arrive at the same time, and a (2 + ∆)-approximation
when jobs are released over time (yet offline). Central to unlocking an efficient
approximation algorithm for the unrelated machines case was the introduction
of a time-indexed linear program that lower bounds the objective value of the
optimal non-anticipatory scheduling policy. It is this LP that allows the authors
to overcome the complexities of the unrelated machines setting.

The present paper targets the more realistic online setting for the scheduling
of stochastic jobs on unrelated machines. A priori, it is not clear that there
should exist an algorithm with small competitive ratio. Prior work for the offline
problem requires sophisticated linear [30] or convex [3] programming relaxations.
Good candidates for online algorithms are simple and combinatorial, but even
discovering an offline algorithm that is combinatorial remains a target.

Results: This paper shows that there exists an online, O(∆)-competitive, combi-
natorial algorithm for stochastic scheduling on unrelated machines. We thereby
(1) develop the first combinatorial algorithm for stochastic scheduling on unre-
lated machines, (2) give the first competitive combinatorial online algorithm for
unrelated machines (even for the deterministic setting), and (3) introduce new
techniques for bounding the performance of stochastic scheduling algorithms.

We address (1) and (2) by giving a simple greedy online algorithm for stochas-
tic scheduling on unrelated machines. The algorithm rests on the simple idea to
assign jobs to those machines where the expected increase of the objective is
minimal, an idea that was used also before, e.g. in [2, 19, 20]. In the online-list
model, where jobs arrive online (at time 0) and must be assigned to a machine
immediately upon arrival, we establish a (8 + 4∆)-competitive algorithm. In
the online-time model, where jobs arrive over time, we derive a (144 + 72∆)-
competitive algorithm The Ω(∆) lower bound for fixed assignment policies in
[30] yields that both these results are asymptotically tight in ∆.

As to (3), we develop how to use dual fitting techniques for stochastic and
non-preemptive algorithm analysis. The technique has been used in [1] for deter-
ministic and preemptive problems. This paper establishes that dual fitting is a
powerful technique for bounding the performance of algorithms in stochastic set-
tings and it is this technique that unlocks the ability to analyze a combinatorial
algorithm. This is the first use of dual fitting for stochastic scheduling.



2 Notation & Preliminaries

We are given a set of unrelated parallel machinesM of cardinalitym. We consider
two online models. In the first model, known as online-list, we are presented a
sequence of jobs j ∈ J , which are presented to us one after the other, and
whenever a job is presented we have to assign it to one of the machines. It is
unknown how many jobs will arrive, but once all jobs in J have arrived, the
jobs assigned to any one of the machines must be scheduled on that machine.
In the other model, known as online-time, time progresses and jobs appear over
time at their individual release times rj . At the moment of arrival a job must be
assigned to a machine, but can possibly wait on that machine until it is finally
processed. Each job j needs to be executed on any one of the machines i ∈ M ,
and each machine can process at most one job at a time.

The jobs are nonpreemptive. That means that a job, once started, must not be
interrupted until its completion. Moreover, the jobs are stochastic, meaning that
each job j’s processing time is only revealed in the form of a random variable Pij
for every machine i ∈ M . If job j is assigned to machine i, its processing time
will be random according to Pij . It is allowed that certain jobs j ∈ J cannot be
processed on certain machines i ∈M , in which case E[Pij ] =∞.

In the stochastic scheduling model, the actual realization of the processing
time of a job j becomes only known at the moment that the job completes.
We are looking for a non-anticipatory scheduling policy Π which minimizes the
expected total weighted completion time E

[∑
j wjCj

]
, where Cj denotes the

completion time of job j.
We will assume for simplicity that the random variables Pij are discrete and

integer valued. This assumption comes at the cost of a multiplicative factor (1+ε)
in the final approximation ratio, for any ε > 0 [30]. We will subsequently make
use of the following facts about first and second moments of discrete random
variables; they also appear in [30].

Lemma 1. Let X be an integer-valued, nonnegative random variable. Then,∑
r∈Z≥0

P[X > r] = E[X] and
∑
r∈Z≥0

(r + 1
2 )P[X > r] =

1

2
E[X2] .

Definition 1. Let X be a nonnegative random variable. The squared coefficient
of variation is defined as the scaled variance of X, that is,

CV[X]2 := Var[X]/E[X]2 ,

where Var[X] = E[X2]− E[X]2.

2.1 Stochastic Online Scheduling & Policies

The setting that we consider in this paper is that of stochastic online scheduling
as defined also in [20]. That means that (the existence of) a jobs j is unknown
before it arrives, and upon arrival, only the random variables Pij for the possible



processing times on machine i = 1, . . . ,m are known. At any given time t, a non-
anticipatory online scheduling policy is allowed to use only that information
that is available at time t. In particular, it may anticipate the (so far) realized
processing times of jobs up to time t. For example, a job that has possible sizes
1, 3 or 4 with probabilities 1/3 each, and has been running for 2 time units, will
have processing times 3 or 4, each with probability 1/2. That adaptivity over
time may be relevant in order to minimize the expectation of the total weighted
completion times is well known even in the offline setting, e.g. [32]. We refer to
[20] for a more thorough discussion of the stochastic online model.

For simplicity of notation, we denote by OPT the expected total weighted
completion time of an optimal, non-anticipatory online scheduling policy for the
problem. That is, OPT is our benchmark, and we seek to find a non-anticipatory
online scheduling policy (an algorithm) with expected performance ALG close to
OPT. Note that, for convenience we use the same notation for both algorithm
and its expected performance.

We may assume w.l.o.g. that no pair of job and machine exists with E[Pij ] =
0, as then we can always schedule such job j at machine i (whenever released)
at minimum possible cost. That said, we may further assume that E[Pij ] ≥ 1 for
all machines i and jobs j, by scaling.

3 Linear Programming Relaxations

As previously discussed also in [30, §8], we are going to use variables yijs that
denote the probability that job j is being processed on machine i within time
interval [s, s+ 1], under some given and fixed scheduling policy. It is well known
that yijs can be linearly expressed in terms of the variables xijt, which denote
the probability that job j is started at time t on machine i, as follows

yijs =

s∑
t=0

xijt P[Pij > s− t] . (1)

The fact that any machine can process at most one job at a time can be written
as ∑

j∈J
yijs ≤ 1 for all i ∈M , s ∈ Z≥0. (2)

Moreover, making use of (1) and the first part of Lemma 1, the fact that each
job needs to be completely processed translates into the constraints∑

i∈M

∑
s∈Z≥0

yijs
E[Pij ]

= 1 for all j ∈ J . (3)

Finally, with the help of (1) and the second part of Lemma 1, the expected
completion time of a job j can be expressed in yijs variables as

CSj :=
∑
i∈M

∑
s∈Z≥0

(
yijs
E[Pij ]

(
s+ 1

2

)
+

1− CV[Pij ]
2

2
yijs

)
for all j ∈ J , (4)



where we labeled the expected completion time variables with a superscript S
for “stochastic”, for reasons that will become clear shortly.

For the analysis to follow, we also need to express the fact that the expected
completion time of a job cannot be smaller than its expected processing time

CSj ≥
∑
i∈M

∑
s∈Z≥0

yijs for all j ∈ J . (5)

That said, we can write down the following LP relaxation for the unrelated
machine scheduling problem, which extends the one given in [30] by the addi-
tional constraints (5).

min zS =
∑
j∈J

wj C
S
j

s.t. (2), (3), (4), (5)

yijs ≥ 0 for all j ∈ J , i ∈M , s ∈ Z≥0.

(S)

Subsequently, we want to work with the dual of this relaxation. However the
term −CV[Pij ]

2 in the primal objective would appear in the dual constrains. As
we do not know how to deal with this negative term in the analysis that is to
follow, we are going to factor it out.

To that end, we first define a simpler, i.e., deterministic version for the ex-
pected completion times (4), labeled with “P” to distinguish it from the previous
formulation, by letting

CPj =
∑
i∈M

∑
s∈Z≥0

yijs
E[Pij ]

(
s+

1

2

)
+
yijs
2

for all j ∈ J . (6)

Now consider the following linear programming problem

min zP =
∑
j∈J

wj C
P
j

s.t. (2), (3), (6)

yijs ≥ 0 for all j ∈ J , i ∈M , s ∈ Z≥0 .

(P)

This corresponds to a time-indexed linear programming relaxation for a purely
deterministic, unrelated machine scheduling problem where the random process-
ing times are fixed at their expected values E[Pij ].

We are now going to establish a relation between these two relaxations. To
do that, let us define an upper bound on the squared coefficient of variation by

∆ := max
i,j

CV[Pij ]
2 .

Next, for any given solution y of (S) or (P), we define

H(y) :=
∑
j∈J

wj
∑
i∈M

∑
s∈Z≥0

yijs .



Now let yS denote an optimal solution to (S), and note that by constraints (5),

H(yS) =
∑
j∈J

wj
∑
i∈M

∑
s∈Z≥0

ySijs ≤
∑
j∈J

wjC
S
j = zS(yS) ≤ OPT .

The next lemma is crucial for our analysis and establishes the relation between
the two relaxations.

Lemma 2. The optimal solution values zP and zS of the linear programming
relaxations (P) and (S) fulfill

zP ≤
(
1 +

∆

2

)
zS .

Recalling that (S) is a relaxation for the stochastic scheduling problem, we con-
clude the following.

Corollary 1. The optimal solution value zP of the linear programming relax-
ation (P) is bounded by the expected performance of an optimal scheduling policy
by

zP ≤
(
1 +

∆

2

)
OPT .

Just like [1], we now consider the dual of (P), which will have unconstrained
variables αj for all j ∈ J and nonnegative variables βis for all i ∈ M and
s ∈ Z≥0. The dual is

max zD =
∑
j∈J

αj −
∑
i∈M

∑
s∈Z≥0

βis

s.t.
αj

E[Pij ]
− βis ≤ wj

(
s+ 1

2

E[Pij ]
+

1

2

)
for all i ∈M, j ∈ J, s ∈ Z≥0 ,

βis ≥ 0 for all i ∈M, s ∈ Z≥0 .

(D)

We are going to define a feasible solution for the dual (D) by means of a simple
online algorithm for the original scheduling problem. The same type of greedy
algorithm has been used before, both in deterministic and stochastic scheduling
on parallel machines, e. g. in [2, 19, 20].

4 Greedy Algorithm & Analysis

Let us assume w.l.o.g. that the jobs are presented in the order 1, 2 . . . , |J |. On
any machine i, denote by H(j, i) the set of all jobs that have higher priority
according to their order in non-increasing order of ratios wj/E[Pij ], breaking
ties by index. That is, H(j, i) := {k ∈ J | wk/E[Pik] > wj/E[Pij ]} ∪ {k ∈ J |
k ≤ j, wk/E[Pik] = wj/E[Pij ]}. Also, let L(j, i) := J \ H(j, i). Further, denote
by k → i the fact that a job k has been assigned to a machine i.

Greedy Algorithm: Whenever a new job j ∈ J is presented to the algo-
rithm, we compute for each of the machines i ∈ M the instantaneous expected



increase if the jobs already present on each machine where to be scheduled in
non-increasing order of the ratios weight over expected processing time,

EI(j → i) := wj

(
E[Pij ] +

∑
k→i,k<j,k∈H(j,i)

E[Pik]

)
+ E[pij ]

∑
k→i,k<j,k∈L(j,i)

wk .

We assign the job to one of the machines where this quantity is minimal, that is, a
job is assigned to machine i(j) := argmini∈M{EI(j → i)}; ties broken arbitrarily.
Once all jobs have arrived and are assigned, they will be sequenced in non-
increasing order of ratios weight over expected processing time, which is optimal
conditioned on the given assignment [27].

Now we define the dual solution (α, β) in a similar same way as it has been
done in [1]. We let

αj := EI(j → i(j)) for all j ∈ J .

That is, αj is defined as the instantaneous expected increase on the machine to
which it is assigned by the greedy algorithm. Moreover, let

βis :=
∑

j∈Ai(s)

wj ,

where Ai(s) is defined as the total set of jobs assigned to machine i by the greedy
algorithm, but restricted to those that have not yet been completed by time s if
the jobs’ processing times were their expected values E[Pij ]. In other words, βis
is exactly the expected total weight of yet unfinished jobs on machine i at time
s, given the assignment (and sequencing) of the greedy algorithm.

Fact 1 The solution (α/2, β/2) is feasible for (D).

Moreover, we have the following observations which follow more or less di-
rectly from the definition of the dual variables (α, β). Let us denote by ALG the
total expected value achieved by the greedy algorithm.

Lemma 3. The total expected value of the greedy algorithm is

ALG =
∑
j∈J

αj =
∑
i∈M

∑
s∈Z≥0

βis .

5 Speed Augmentation & Analysis

The previous analysis of the dual feasible solution (α/2, β/2) yields a dual ob-
jective value 0 by Lemma 3, which is of little help. However following [1], we
can define another dual solution which has an interpretation in the model where
all machines run at faster speed f ≥ 1, meaning that all (expected) processing
times get scaled down by a factor f−1. This will yield something useful.



So let us define ALGf as the expected solution value obtained by the same
greedy algorithm, only when all the machine run at speed f . Note that ALG =
fALGf , by definition. We denote by (αf , βf ) the exact same dual solution that
was defined before, only for the new instance with faster machines. We now claim
the following.

Lemma 4. The solution

(
1

2
αf ,

1

2f
βf )

is a feasible solution for the dual (D) in the original (unscaled) problem instance.

Now we conclude with the first main theorem of the paper.

Theorem 1. The greedy algorithm is a (8+4∆)-competitive algorithm for online
scheduling of stochastic jobs to minimize the expectation of the total weighted
completion times E[

∑
j wjCj ].

Proof. We know from Corollary 1 that

zD(
1

2
αf ,

1

2f
βf ) ≤ zD = zP ≤

(
1 +

∆

2

)
OPT .

Next, recall that ALGf =
∑
j∈J α

f
j =

∑
i∈M

∑
s∈Z≥0

βfis by Lemma 3, and ALG =

fALGf . The theorem now follows from evaluating the objective value of the
specifically chosen dual solution ( 1

2α
f , 1

2f β
f ) for (D), as

zD(
1

2
αf ,

1

2f
βf ) =

1

2

∑
j∈J

αfj −
1

2f

∑
i∈M

∑
s∈Z≥0

βfis =
f − 1

2f
ALGf =

f − 1

2f2
ALG .

Putting together this equality with the previous inequality yields a performance

bound of 2f2

f−1 (1 + ∆
2 ), which is minimal for f = 2. ut

6 The Online Time Model

We now consider the online time model where jobs arrive over time. A job j
arrives at time rj . We can assume w.l.o.g. that rj ≤ rk for j < k. In the
algorithm, which is the analogue of the one used in [20] for the parallel machine
setting, each job will be irrevocably assigned to a machine upon arrival.

Modified Greedy Algorithm: 1. Assignment of jobs to machines: At time
rj , we compute for each of the machines EI(j → i) exactly in the same way as
it has been done for the case without release times, and assign job j to one of
the machines that minimizes EI(j → i). 2. Scheduling: For the case with release
dates, it is well known that (long) jobs must be delayed in order to achieve
competitive algorithms [19, 20]. We do the same here, but we insert a little more
forced idleness than these papers. For any job j assigned to machine i at time
rj , we modify its release date to r′j = max{2rj ,E[Pij ]}. Now if a machine i falls



idle at a time t, among all unfinished jobs assigned to i and with r′j ≥ t, we
schedule the job with the highest ratio wj/E[Pij ], by first forcing the machine
to remain idle for E[Pij ] units of time, and then beginning the actual processing
of job j.

The main result of this section is:

Theorem 2. For the stochastic online scheduling problem on unrelated parallel
machines with release dates, if maxi,j CV[Pij ]

2 ≤ ∆, then the Modified Greedy
Algorithm is (144 + 72∆)-competitive.

Proof Sketch: The full proof is a bit intricate and presented in the appendix.
Here we sketch the main steps in the analysis. Defining the expected cost of the
modified greedy algorithm as ALGS and of the optimal non-anticipative policy
as OPT, our goal is to prove ALGS ≤ (144 + 72∆)OPT.
Step 1: As in the online-list model, the core of the argument proceeds via an
instance with augmented machine speeds. Given instance {rj , {Pij}i∈M}j∈J , we
define a family of instances parameterized by speed-up f with release times
rfj = rj and processing times P fij = Pij/f . Denote by ALGfS the expected cost of
a variant of the modified greedy algorithm where the scheduling rule is changed
to use the modified release times as Rfj = max{rj ,E[P fij ]}. Then a time scaling
argument shows

ALGS = 2 · ALG2
S .

In fact, the equality is even in distribution and not just for expectations.
Step 2: For the stochastic instance {rfj , {P

f
ij}}, we define the deterministic in-

stance where processing time of job j on machine i is non-stochastic and equals
E[P fij ]. Further, we begin processing the jobs as soon as they are scheduled, with-

out the idleness. Let ALGfD denote the cost of our algorithm on this instance.
We show,

ALGfS ≤ 6 · ALGfD.

Step 3: As in Section 3, we define the LP relaxation of the online stochastic
machine scheduling problem (with optimal solution zSo). The only difference is
that yijs are forced to be 0 for s ≤ rj . Analogously, zPo denotes the optimal
solution value of the corresponding deterministic version as in Section 3, giving
us:

zPo ≤
(

1 +
∆

2

)
zSo ≤

(
1 +

∆

2

)
OPT.

Finally, we use a dual fitting argument to prove, for any f > 1:

ALGfD ≤
6f

f − 1
zPo .

Now substituting f = 2,

ALGS = 2ALG2
S ≤ 2 · 6 · ALG2

D ≤ 2 · 6 · 12 · zPo ≤ 144

(
1 +

∆

2

)
OPT.



7 Conclusions

The main result of this paper is to show that simple, combinatorial online al-
gorithms can be worst-case analyzed even for the most general of all machine
scheduling models and uncertain job sizes. Further, the performance bounds are
O(∆), asymptotically the same as the identical machines setting.
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A Omitted Proofs

Proof of Lemma 2

Proof. Let yP be an optimal solution to (P) and yS be an optimal solution to
(S). Clearly, yS is a feasible solution also for (P) which is less constrained. Hence
we get that

zP = zP (yP ) ≤ zP (yS)

= zS(yS) +
∑
j∈J

wj
∑
i∈M

∑
s∈Z≥0

CV[Pij ]
2

2
ySijs

≤ zS(yS) +
∆

2
H(yS) ≤

(
1 +

∆

2

)
zS(yS) .

(7)

Note that the second-to-last inequality only uses the definitions of ∆ and H(·).
The last inequality holds because H(yS) ≤ zS(yS). ut

Proof of Fact 1

Proof. In fact we can show that

αj
E[Pij ]

≤ βis + wj

(
s

E[Pij ]
+ 1

)
(8)

holds for all i ∈M , j ∈ J , and s ∈ Z≥0. This implies the feasibility of (α/2, β/2)
for (D). Let us fix job j and machine i, and recall that k → i describes the fact
that a job k got assigned to machine i. First, by definition of αj and by choice
of i(j) as the minimizer of EI(j → i), for all i we have

αj
E[Pij ]

≤ EI(j → i)

E[Pij ]
= wj + wj

∑
k→i,k<j,k∈H(j,i)

E[Pik]

E[Pij ]
+

∑
k→i,k<j,k∈L(j,i)

wk . (9)

We are going to argue that the right-hand-side of (9) is upper bounded by the
right-hand side of (8), from which the claim follows. First observe that the term
wj cancels. Next observe that any job k → i, k 6= j, can appear in the right-hand
side of (9) at most once, either with value wk, namely when k ∈ L(j, i), or with
value wjE[Pik]/E[Pij ] ≤ wk when k ∈ H(j, i). We show that each of these values
in the right-hand-side of (9) is accounted for in the right-hand side of (8), for
any s ≥ 0.

Therefore, let us fix any such job k → i. First consider the case that the
time s is small enough so that our job k → i is still alive at time s, so s <∑
`→i,`∈H(k,i) E[Pi`]. Then, wk is accounted for in the definition of βis, and we

are done.
So now consider the case that s ≥

∑
`→i,`∈H(k,i) E[Pi`], which means that

job k is already finished at time s. In that case, we distinguish two cases.



Case 1 is k ∈ L(j, i): In that case, job k contributes to the right-hand side
of (9) a value of wk, but as s ≥

∑
`→i,`∈H(k,i) E[Pi`], the term wj(s/E[Pij ]) in

the right-hand side of (8) contains the term wj(E[Pik]/E[Pij ]) ≥ wk.
Case 2 is k ∈ H(j, i): In that case, job k contributes to the right-hand side

of (9) a value of wj(E[Pik]/E[Pij ]), which is exactly what is also contained in
the term wj(s/E[Pij ]), because s ≥

∑
`→i,`∈H(k,i) E[Pi`]. ut

Proof of Lemma 3

Proof. For the first equality, recall that αj is the total expected instantaneous
increase of the expected value that ALG achieves. Summing this over all jobs
gives exactly the total expected value for ALG. For a formal proof of this, see
for example [20, Lemma 4.1] for the case of parallel identical machines. That
lemma and its proof can directly be extended to the case of unrelated machines.
The second equality follows from the fact that the (expected) total weighted
completion time of any schedule can be alternatively expressed by weighting
each period of time by the total weight of yet unfinished jobs. The equality is
true here, because β was defined on the basis of the same distribution of jobs over
machines as given by ALG, and because each job k’s weight wk, given k → i,
appears in βis for all s up to a job k’s expected completion time, given jobs’
processing times are fixed to their expected values. This is exactly what happens
also in computing the expected completion times under the greedy algorithm,
because it is a “fixed assignment” algorithm that assigns all jobs to machines at
time 0, and sequences the jobs per machine thereafter. ut

Proof of Lemma 4

Proof. By definition of (1
2α

f , 1
2f β

f ), to show feasibility for (D) it suffices to show

αfj
E[Pij ]

≤ 1

f
βfis + wj

(
s

E[Pij ]
+ 1

)
for all i, j, s. By definition of α we have αj = fαfj . So the above is equivalent to

αj
E[Pij ]

≤ βfis + wj

(
f · s
E[Pij ]

+ f

)
. (10)

As f ≥ 1, (10) is implied by

αj
E[Pij ]

≤ βfis + wj

(
f · s
E[Pij ]

+ 1

)
. (11)

To see that this is true, observe that we can use the exact same argument as
before in the proof of the feasibility of (α/2, β/2) in Fact 1, because the left-hand
side of (11) is identical to the left-hand side of (9), and the right-hand side of

(11) is identical to the right-had side of (9), because βfis = βi(f ·s). ut



Proof of Theorem 2

We will follow the outline described in the main body.

Step 1. Bound on ALGS versus stochastic augmented instance. Recall
that we defined the speed augmented instance with release times rj and stochas-

tic processing times P fij = Pij/f . Denote by ALGfS the expected solution value
obtained by the greedy algorithm where if a job is assigned to machine i upon
arrival, it will become available at time Rfj = max{rj ,E[Pij ]/f}. By noting that
for the original stochastic instance, the time at which job j is made available to
machine i for scheduling is r′j = max{2rj ,E[Pij ]} and that the assignment deci-
sions of jobs to machines depend only on the order of release, and are invariant
to scaling of processing times, we see that the schedule of the speed augmented
instance with f = 2 is exactly the schedule of the original stochastic instance
but with the time axis compressed by a factor of 2. Therefore, ALGS = 2ALG2

S .

Step 2. Upper bound on ALGf
S. For the stochastic instance {rj , {Pij}}, we

first establish an upper bound on the expected completion time of a job j if it is
assigned to machine i under the modified greedy algorithm, and the scheduling
rule is changed to use the modified release times as Rij = max{rj ,E[Pij ]}.

Lemma 5. For the stochastic instance {rj , {Pij}}, if a job j is assigned to ma-
chine i under the modified greedy algorithm, its expected competition time is
bounded by

E[Cj |j → i] ≤ 4Rij + 2
∑

k→i,k∈H(j,i)

E[Pik].

Proof. With the modified release times, job j becomes available on machine i
at time Rij . We use the random variable X to denote the remaining processing
time of a job l being processed at time Rij , if any such job exists. If machine i
is idle at that time, X has value 0. Note that job j will not be started until job
l and any available job with higher priority are completed. Thus we can bound
the expected start time of job j by

E[Sj |j → i] ≤ Rij + E[X] + 2
∑

k→i,k∈H(j,i)\{j}

E[Pik] + E[Pij ] . (12)

To bound E[X], we define a sequence of random variables Y1, Y2, · · · where
Yk measures the time interval between the completion time of the (k − 1)st job
and that of the kth job completed on machine i. Let Ik denote the idle time of
machine i within this interval. Define Ak to be the sum of the expected processing
time of the kth job completed and Ik. Under the modified greedy algorithm,

Yk ≥ Ak w.p. 1, and E[Yk|Y1, . . . , Yk−1] ≤ 2Ak.

Define the Rij−stopping time τ with respect to the sequence as

τ := min{n′ : Y1 + Y2 + · · ·+ Yn′ ≥ Rij}.



By Lemma 9 (see Appendix B), we have

Rij + E[X] = E[Y1 + Y2 + · · ·+ Yτ ] ≤ 4Rij .

Therefore,

E[Cj |j → i] = E[Sj ] + E[Pij ] ≤ 4Rij + 2
∑

k→i,k∈H(j,i)

E[Pik].

ut

Now we can derive an upper bound on the cost ALGfS of the modified greedy

algorithm for the stochastic instance {rfj , {P
f
ij}} in terms of the cost ALGfD for

the corresponding deterministic instance.

Lemma 6.
ALGfS ≤ 6ALGfD.

Proof. Let CfSj denote the completion time of job j for the stochastic instance.
From Lemma 5, we know that

ALGfS = E[
∑
j

wjC
f
Sj ] =

∑
i

∑
j:j→i

wjE[CfSj |j → i]

≤
∑
i

∑
j:j→i

4wjR
f
ij + 2wj

∑
k→i,k∈H(j,i)

E[Pik]


≤
∑
i

4
∑
j:j→i

wj(r
f
j + E[P fij ]) + 2

∑
j:j→i

wj
∑

k→i,k∈H(j,i)

E[Pik]

 ,
where the last inequality follows by the definition of the modified release dates
Rfij = max{rfj ,E[P fij ]}.

Note that the assignment of jobs to machines is independent of the release
times {rfj } and the realization of processing times. Hence job j is assigned to

the same machine i for the stochastic instance {rfj , {P
f
ij}} and deterministic

instance {rfj , {E[P fij ]}}. We denote by CfDj the completion time of job j for

the deterministic instance. Hence for each machine i,
∑
j:j→i wj(r

f
j + E[P fij ]) ≤∑

j:j→i wjC
f
Dj . Moreover,∑

j:j→i
wj

∑
k→i,k∈H(j,i)

E[Pik] ≤
∑
j:j→i

wjC
f
Dj ,

as the left-hand-side is simply the value of the optimal solution on machine i
without considering release times [27], which is clearly a lower bound. Therefore,

ALGfS ≤ 6
∑
i

∑
j:j→i

wjC
f
Dj = 6ALGfD .

ut



Step 3.1 LP Relaxation Analogous to (S), we will define the LP relaxation
for the online stochastic scheduling instance. We omit writing out the LP re-
laxation in detail as it it exactly the same as (S), except that the variables yijs
are defined only for s ≥ rj . Let us call this LP “So” and its optimal solution
value zSo . Similarly, analogous to (P) we can write the LP relaxation for the
online deterministic version by dropping the CV[Pij ]

2 terms from the objective
function. Call this deterministic LP relaxation “Po” with optimal solution value
zPo . Lemma 2 and Corollary 1 apply to zPo and zSo in exactly the same way.
That is,

zPo ≤
(
1 +

∆

2

)
zSo ≤

(
1 +

∆

2

)
OPT .

Step 3.2. Lower bound on zPo . To lower bound the cost of the deterministic
Primal LP relaxation Po, we will define a feasible solution to its dual LP, which
is:

max zDo =
∑
j∈J

αj −
∑
i∈M

∑
s∈Z≥0

βis

s.t.
αj

E[Pij ]
− βis ≤ wj

(
s+ 1

2

E[Pij ]
+

1

2

)
for all i ∈M, j ∈ J, s ∈ Z≥rj ,

βis ≥ 0 for all i ∈M, s ∈ Z≥0 .

(Do)

To define a feasible solution for (Do), we consider the modified greedy algo-
rithm for the speed augmented instance with speed up f . The release times of
the speed augmented instance are unchanged: rfj = rj , and the processing times

(deterministic) are a factor of f smaller: P fij = E[Pij ]/f . To construct the dual
solutions, we will use the schedule obtained by a variant of modified greedy run
on the speed augmented instance where the machine assignment decisions are
based on the values EI(j → i), but when scheduling the jobs assigned to a ma-

chine i, we consider the modified release time as Rfij = max{rfj , P
f
ij}. Note that

the machine assignments for the speed augmented instance are identical to the
assignments made by the Modified Greedy Algorithm for the original instance,
since they do not depend on release times and are invariant under scaling all
processing times. Further, note that the cost of the just defined variant of the
modified greedy algorithm on the deterministic instance is precisely ALGfD.

For job j ∈ J , define

αfj := min
i

2wj(r
f
j + P fij) + wj

∑
k→i,k≤j,k∈H(j,i)

P fik + P fij
∑

k→i,k<j,k∈L(j,i)

wk

 .
For a machine i and time s, we denote by Afi (s) the total set of jobs assigned
to machine i by the modified greedy algorithm on the augmented deterministic
instance, but restricted to those jobs that have not been completed by time s



(including those that are assigned but not available according to release times

Rfij). We define βfis as the total weight of jobs in Afi (s), i.e.,

βfis :=
∑

j∈Af
i (s)

wj .

Lemma 7. The values ({αj}, {βis}) :=

(
{α

f
j

6 }, {
βf
is

6f }
)

are feasible for (Do).

Proof. Fix job j and machine i. We need to show that

fαfj
E[Pij ]

≤ βfis + 6fwj

(
s+ 1

2

E[Pij ]
+

1

2

)
holds for all i ∈M , j ∈ J , and s ≥ rj . By the definition of αfj , for any machine
i, we have

αfj ≤2wj(r
f
ij + P fij) + wj

∑
k→i,k≤j,k∈H(j,i)

P fik + P fij
∑

k→i,k<j,k∈L(j,i)

wk

=2wj

(
rj +

E[Pij ]

f

)
+ wj

∑
k→i,k≤j,k∈H(j,i)

E[Pik]

f
+

E[Pij ]

f

∑
k→i,k<j,k∈L(j,i)

wk

Equivalently,

fαfj
E[Pij ]

≤2wj(frj + E[Pij ])

E[Pij ]
+ wj

∑
k→i,k≤j,k∈H(j,i)

E[Pik]

E[Pij ]
+

∑
k→i,k<j,k∈L(j,i)

wk

≤wj
(

2
fs

E[Pij ]
+ 3

)
+ wj

∑
k→i,k<j,k∈H(j,i)

E[Pik]

E[Pij ]
+

∑
k→i,k<j,k∈L(j,i)

wk ,

where the last inequality follows by the fact that rj ≤ s. Therefore, it suffices to
show that

wj
∑

k→i,k<j,k∈H(j,i)

E[Pik]

E[Pij ]
+

∑
k→i,k<j,k∈L(j,i)

wk ≤ βfis + 3fwj
s

E[Pij ]
. (13)

Let Df
ij(s) denote the set of jobs k < j assigned to machine i and completed

by time s, and Ufij(s) be the set of jobs k < j assigned to machine i and still
unfinished (alive) at time s (including those are assigned but not available ac-

cording to modified release times Rfij). Observe that Ufij(s) ⊂ Afi (s). Hence by

the definition of βfis, ∑
k∈Uf

ij(s)

wk ≤
∑

k∈Af
i (s)

wk = βfis. (14)



Here ∑
k∈Df

ij(s)

E[Pik]

f
≤ s. (15)

Note that if k ∈ H(j, i), wj
E[Pik]
E[Pij ]

≤ wk, and if k ∈ L(j, i), wj
E[Pik]
E[Pij ]

> wk. Then

we can upper bound the left-hand side (LHS) of (13) as follows:

LHS of (13) =
∑

k∈H(j,i)∩Df
ij(s)

wj
E[Pik]

E[Pij ]
+

∑
k∈L(j,i)∩Df

ij(s)

wk

+
∑

k∈H(j,i)∩Uf
ij(s)

wj
E[Pik]

E[Pij ]
+

∑
k∈L(j,i)∩Uf

ij(s)

wk

≤
∑

k∈H(j,i)∩Df
ij(s)

wj
E[Pik]

E[Pij ]
+

∑
k∈L(j,i)∩Df

ij(s)

wj
E[Pik]

E[Pij ]

+
∑

k∈H(j,i)∩Uf
ij(s)

wk +
∑

k∈L(j,i)∩Uf
ij(s)

wk

=
wj

E[Pij ]

∑
k∈Df

ij(s)

E[Pik] +
∑

k∈Uf
ij(s)

wk

≤ wj
E[Pij ]

s+ βfis,

where the last inequality follows from (14)-(15). ut

Corollary 2. The optimal solution of the deterministic LP relaxation (Po) is
bounded by:

zPo ≥ 1

6

∑
j∈J

αfj −
1

f

∑
i∈M

∑
s

βfis

 .

Step 3.3 Upper bound on ALGf
D . Finally, to complete the proof, we prove

that the dual variables (αf , βf ) bound the cost of the algorithm for the speed

augmented deterministic instance, ALGfD. This in turn allows us to upper bound

ALGfD in terms of the optimal value of the deterministic LP relaxation zPo .

Lemma 8. The total weighted completion time of the modified greedy algorithm
on the deterministic instance with f -speedup satisfies

ALGfD ≤
∑
j∈J

αfj , ALGfD =
∑
i∈M

∑
s∈Z≥0

βfis .

Combined with Corollary 2, the above gives:

ALGfD ≤
6f

f − 1
zPo .



Proof. For each job j, let ij denote the machine to which it is assigned. By the
same argument as that for (12), we can obtain the following upper bound on the
start time of job j :

Sj ≤ Rfijj +X +
∑

k→ij ,k∈H(j,ij)\{j}

E[P fijk] ,

where X is the remaining processing time of a job l in process at time Rfijj , if

any such job exists; otherwise X has value 0. Next observe that X ≤ Rfijj : This

clearly holds if machine i is idle at Rfijj . Assume that job l is being processed

at Rfijj . Then it must be true that max{rj ,E[P fij l]} = Rfij l ≤ Rfijj . Hence X ≤
E[P fij l] ≤ R

f
ijj
. Therefore, we have

ALGfD =
∑
j

wjC
f
j ≤ 2

∑
j

wjR
f
ijj

+
∑
j

wj
∑

k→ij ,k∈H(j,ij)

P fijk. (16)

By applying the following index rearrangement,∑
j

wj
∑
k→ij

k∈H(j,ij)
k>j

P fijk =
∑
j

P fijj
∑
k→ij

k∈L(j,ij)
k<j

wk,

we can rewrite the second part of the right hand side of (16) as∑
j

wj
∑
k→ij

k∈H(j,ij)

P fijk =
∑
j

wj
∑
k→ij

k∈H(j,ij)
k≤j

P fijk +
∑
j

P fijj
∑
k→ij

k∈L(j,ij)
k<j

wk.

We thus obtain

ALGfD ≤
∑
j

2wj(r
f
j + P fijj) + wj

∑
k→ij

k∈H(j,ij)
k≤j

P fijk + P fijj
∑
k→ij

k∈L(j,ij)
k<j

wk


=
∑
j

(
2wjr

f
j +

1

f
min
i

EI(j → i)

)
=
∑
j

αfj ,

where the first equality follows by the fact that ij minimizes EI(j → i) (note
that the machine assignment is the same under the speed augmented instance
as in the original stochastic instance) under the modified greedy algorithm, and

the second equality comes from the definition of αfj .

The proof of ALGfD =
∑
i

∑
s β

f
is is the same as that of Lemma 3. ut



B Auxiliary Lemmas

Lemma 9. Let X1, X2, . . . , be a sequence of random variables, with Xi adapted
to the filtration Fi−1 = σ(X1, . . . , Xi−1) for all i ≥ 1. Further, let A1, A2, . . . be
another sequence, with Ai adapted to Fi−1 satisfying

1. 0 ≤ Ai ≤ T almost surely,
2. Xi ≥ αAi almost surely, and E[Xi] ≤ (1 + α)Ai for some α > 0.

Define the T -stopping time of the X1, X2, . . . sequence as:

τ := min{n : X1 + · · ·+Xn ≥ T} (17)

Under the assumption that stopping time τ satisfies E[τ ] <∞, we have

E

[
τ∑
i=1

Xi

]
≤ (1 + α)2

α
T. (18)

In particular, choosing α = 1, so that E[Xi|Fi−1] ≤ 2Ai and Xi ≥ Ai, we have

E

[
τ∑
i=1

Xi

]
≤ 4T.

Proof. The lemma is a straightforward consequence of the Optional Stopping
Theorem. We first note that since E[Xi|Fi−1] ≤ (1 + α)Ai, the sequence:

Mn =

n∑
i=0

(Xi − (1 + α)Ai)

defines a supermartingale with M0 = 0. Under the assumption that E[τ ] < ∞,
Optional Stopping Theorem gives:

E[Mτ ] ≤M0 = 0

Therefore,

E

[
τ∑
i=1

Xi

]
≤ E

[
(1 + α)

τ∑
i=1

Ai

]

= (1 + α)E[Aτ ] + (1 + α)E

[
τ−1∑
i=1

Ai

]

≤ (1 + α)T + (1 + α)E

[
τ−1∑
i=1

Ai

]

≤ (1 + α)T + (1 + α)
T

α

=
(1 + α)2

α
T

Where the first inequality follows from Ai ≤ T , and second inequality follows
from the observations: Ai ≤ 1

αXi almost surely, and
∑τ−1
i=1 Xi ≤ T .


