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ABSTRACT
We consider the problem of admission control in resource
sharing systems, such as web servers and transaction process-
ing systems, when the job size distribution has high vari-
ability, with the aim of minimizing the mean response time.
It is well known that in such resource sharing systems, as
the number of tasks concurrently sharing the resource is
increased, the server throughput initially increases, due to
more efficient utilization of resources, but starts falling be-
yond a certain point, due to resource contention and thrash-
ing. Most admission control mechanisms solve this problem
by imposing a fixed upper bound on the number of concur-
rent transactions allowed into the system, called the Multi-
Programming-Limit (MPL), and making the arrivals which
find the server full queue up. Almost always, the MPL is
chosen to be the point that maximizes server efficiency.

In this paper we abstract such resource sharing systems
as a Processor Sharing (PS) server with state-dependent ser-
vice rate and a First-Come-First-Served (FCFS) queue, and
we analyze the performance of this model from a queueing
theoretic perspective. We start by showing that, counter to
the common wisdom, the peak efficiency point is not always
optimal for minimizing the mean response time. Instead,
significant performance gains can be obtained by running
the system at less than the peak efficiency. We provide a
simple expression for the static MPL that achieves near-
optimal mean response time for general distributions.

Next we present two traffic-oblivious dynamic admission
control policies that adjust the MPL based on the instanta-
neous queue length while also taking into account the vari-
ability of the job size distribution. The structure of our
admission control policies is a mixture of fluid control when
the number of jobs in the system is high, with a stochastic
component when the system is near-empty. We show via
simulations that our dynamic policies are much more robust
to unknown traffic intensities and burstiness in the arrival
process than imposing a static MPL.
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Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—modeling and
prediction, queueing theory ; G.1.6 [Numerical Analysis]:
Optimization—stochastic programming

General Terms
Performance

1. INTRODUCTION
The notion of time-sharing has been around since the ear-

liest days of operating systems, as described in the first pa-
per on Unix [23]. Time-sharing has several benefits. First,
given that jobs often need different resources (CPU, I/O) at
different times, time-sharing allows for increased through-
put, typically allowing two jobs to complete in the same time
as one, since they aren’t likely to need the same resources
at the same time. Another major benefit of time-sharing is
that it allows small jobs to get out quickly; the small jobs
are not stuck queueing behind big jobs as they would be in
a first-come-first-served (FCFS) system, and therefore they
don’t have to suffer the delays of waiting for big jobs to
complete.

However, as many researchers have observed, time-sharing
is most effective when there is a fixed Multi-Programming-
Limit (MPL) imposed, so that not too many jobs can time-
share at once. Allowing too many jobs to time-share can
lead to thrashing (due to the context-switching overhead),
and reduced overall performance. This point has been ob-
served time and time again starting with operating systems
papers in the 1970’s [8] and 1980’s [5, 2], and continuing
to more recent Web server design papers [9, 13], and data-
base implementation papers [24, 12]. Specifically, a system
has a service rate curve which shows that the “speed” of
the system increases when the number of jobs in the system
increases from 1 to 2, and increases again as the number
increases from 2 to 3, but the system speed starts to drop
as the number of jobs in the system increases beyond some
point. Figure 1 shows a typical service rate curve (see, e.g.
[26, Figure 2]).

Model
To model a time-sharing system, we start with a G/G/1/PS
queue where PS denotes “processor sharing,” meaning that
if there are n jobs in the system, they each receive 1

n
th of

the system’s processing capacity. We will assume that the
job sizes (or service requirements) are independently and
identically drawn from a general distribution, and we will
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Figure 1: A prototypical service rate curve. The peak

efficiency point for the curve shown is K∗ = 5.

use X to denote such a generic random variable. We will
use C2 to denote the squared coefficient of variation (SCV)
of X:

C2 =
var(X)

E[X]2

and throughout assume that E[X] = 1 without loss of gen-
erality. In order to capture the fact that the speed of the
system depends on the number of jobs at the server, we
assume that our G/G/1/PS server has state-dependent ser-
vice rates µ(n). That is, when the number of jobs at the
server is n, the speed of the server is µ(n), where µ(n) is
chosen to match the system’s service rate curve (Figure 1).
As an example, a job of size x seconds which is sharing the
server with n jobs (including itself) for its entire duration
would require x

µ(n)
·n time to complete. We assume that the

µ(n) curve is unimodal, that is, initially it is non-decreasing
and then after some point the curve switches to being non-
increasing. We define K′ to be the smallest MPL which
achieves the maximum speed, and K∗ to be the largest MPL
which achieves the maximum speed. For the µ(n) curve in
Figure 1, K′ = 4 and K∗ = 5.

To complete our model, we now add an MPL parame-
ter which limits the number of jobs that are allowed to
concurrently share the server to some number MPL=K,
and forces all remaining jobs to wait in a First-Come-First-
Served (FCFS) buffer. We assume that the job sizes of
the jobs in the system are not known, and size-based pri-
oritization is not possible. We denote our model by the
notation G/G/PS-MPL. Figure 2 depicts a G/G/PS-MPL
system with MPL=4. When we additionally assume the
arrival process to be Poisson, we will denote the system by
M/G/PS-MPL. Throughout, we assume load-dependent ser-
vice rates µ(n). So, for example, if there are n = 10 jobs in
the G/G/PS-4 system, the server speed will be µ(4), since
only 4 jobs time-share the server, while if there are n<4 jobs
in the system, the speed will be µ(n). Thus the response
time for a job of size x will be its queueing time plus its
service time, where the service time will typically be x

µ(4)
·4,

assuming that there are at least 4 jobs in the system during
the job’s time in system.

The interesting question for the G/G/PS-MPL model is,
of course:

What is the optimal MPL, so as to minimize
mean response time?

Obviously, the service rate curve plays a large role in the
answer. In fact, computer systems papers would have us

FCFS

PS

MPL = 4

Figure 2: A G/G/PS-MPL queue with MPL = 4. Only 4

jobs can simultaneously share the server. The rest must

wait outside in FCFS order.

believe that the service rate curve provides the entire answer
to this question: Simply choose that MPL that maximizes
efficiency, e.g., [1, 5, 9]. For the curve shown in Figure 1,
this would mean choosing the MPL to be K′ = 4 or K∗ = 5.
In this paper, we will show that this obvious answer can
be far from correct, when job size variability is high. We
will also ask and answer the even harder question of how
to dynamically vary the MPL when the arrival rate is not
known and as load conditions change.

When the job size distribution is Exponential, the answer
is straightforward: We always want to operate at the peak
efficiency point, regardless of the arrival process. The ques-
tion of choosing an optimal MPL becomes interesting when
the job size distribution exhibits high variability, since with
high variability job size distributions, it is known that PS
has a much better performance than FCFS because time
sharing prevents small jobs from getting blocked behind big
jobs. However, by letting too many jobs into the server, the
system efficiency drops.

Prior Work
Unfortunately, the question of choosing an optimal MPL
for high variability job size distributions is difficult to an-
swer since there is no known analysis even under a Poisson
arrival process with a fixed arrival rate. This is not surpris-
ing because the M/G/PS-MPL model is a generalization of
the classical M/G/K multiserver system where there are K
identical servers, each of which can process at most one job
at a time, and a FCFS buffer where jobs queue up when all
the K servers are busy. The M/G/K multiserver system
can be modeled by an M/G/PS-MPL system with MPL =
K, and µ(n) = µ · n, where µ is the speed of the individual
servers. The performance analysis of the M/G/K system is
still largely an open problem. While the performance analy-
sis of the Processor-Sharing queue has been well understood
for years, and research on the M/G/1/PS queue has been
abundant [14, 15, 7, 16, 27, 29, 6], very little is known about
the M/G/PS-MPL queue. Most analyses of the M/G/PS-
MPL queue do not allow for load-dependent service rates.
For example, Itzhak and Halfin [3] derive a 2-moment ap-
proximation for the mean response time for the M/G/PS-
MPL queue where the service rate is fixed, while Zhang and
Zwart [28] derive a heavy-traffic diffusion approximation for
M/G/PS-MPL (which they refer to as the Limited Processor
Sharing queue) with a fixed service rate. There is one analy-
sis of the M/G/PS-MPL that does involve state-dependent
service rates, see Rege & Sengupta [21]. However [21] re-
quires that job sizes are exponentially-distributed while we
are focusing on high-variability job size distributions which
are more representative of computer workloads. While Fred-
ericks [10] warns that the exponential job size distribution
is not a good indicator of performance of the M/G/PS-MPL
with high variability, he does not derive an approximation



that allows for higher variability. Finally none of the above
theoretical papers have tried to answer the question of how
to set the MPL so as to minimize the mean response time.

While there is a large body of work on adaptive load con-
trol and admission control in resource-sharing systems, all
of the existing work either ignores the crucial point of load-
dependent service rates at the server, or the effect of job
size variability. Elnikety et al. [9] propose monitoring the
load of the server and admitting tasks as long as the result-
ing load does not exceed the peak efficiency point. Blake
[5] also proposes operating at the peak efficiency point, but
uses the fraction of jobs waiting in the virtual memory queue
as an indicator of thrashing to control the MPL. Kamra et
al. [13] model the server as an ideal M/G/1/PS system
thereby ignoring the state-dependence of the service rate.
They monitor the response time of the departing jobs, and
adjust the dropping probability of the arriving requests to
achieve target response time for the admitted tasks. Our so-
lutions differ from [13] in that we do not drop requests. Heiss
and Wagner [12] propose a feedback mechanism to monitor
the effect that changing the MPL has on the performance
metric of interest. However, as the authors observe, this
requires monitoring at least hundreds of departures before
a control decision can be taken. Another drawback of the
solution proposed in [12] is that the authors assume the sys-
tem reaches stationarity after the control decision has been
taken. This assumption is hardly justified, and can cause in-
correct decisions due to a delay between the time the control
action is taken, and the time its effect is observed. Schroeder
et al. [24] consider the problem of setting a static MPL in
the presence of variable job sizes, but the emphasis of [24]
is to find a sufficiently small MPL so that class-based task
prioritization can be done in the FCFS queue. Schroeder
et al. also develop a feedback based controller based on
measuring the throughput and response times, but ignore
the state-dependence of service rate. Van der Weij, Bhulai
and van der Mei [25] also look at admission control in a PS
queue under the assumption that the job size distribution is
of phase type and the phases of all the jobs in the system are
known. The authors assume a constant µ(n), and charac-
terize the optimal admission control policy. In contrast, we
assume that no information about the job sizes is available
and hence size-based prioritization is not possible.

Contributions of this paper
To the best of our knowledge, we are the first to consider
the question of controlling the multi-programming limit in
a resource-sharing system by taking into account both the
service rate curve, and the high variability of the job size
distribution. Our paper has two principal contributions:
1. Optimal traffic-aware static policies
We derive the first approximation for mean response time
for the M/G/PS-MPL queue with state-dependent service
rates, and extend this approximation for GI/G/PS-MPL
systems. The approximation enables us to choose the MPL
that minimizes mean response time. Via extensive simula-
tion experiments presented both in this paper and in [11],
we demonstrate that the optimal MPL setting can be much
higher than the peak efficiency point, under job size vari-
ability characteristic of computer workloads. In fact, we
show examples where the optimal MPL operates the system
at 85% of the peak efficiency, while dropping the mean re-
sponse time by more than 65% [11]. Our results are verified

across a variety of job size distributions including Weibull,
Pareto and Hyperexponential distributions. We refer to the
static policy which uses the optimal static MPL as the Opt-
Static policy.
2. Near-optimal traffic-oblivious dynamic policies
The above results assume jobs arrive according to a Poisson
process with a known arrival rate and propose the best sta-
tic MPL. However, we are interested in scenarios where the
mean arrival rate may not be known, or the arrival process
may not even be Poisson, exhibiting burstiness or temporal
correlations. Our goal is to design light-weight MPL control
policies that adapt to the traffic characteristics. By light-
weight policies, we mean policies which take decisions based
only on the instantaneous number of jobs in the buffer, Q(t),
and the instantaneous number of jobs at the server, K(t).

We first consider the setting where the arrival process is
known to be Poisson, but with an unknown mean arrival
rate. We find that, unsurprisingly, static MPLs are very
poor in handling uncertainty in the mean arrival rate. We
then propose two light-weight MPL control policies, Light-
Approx and Poisson-Approx that robustly handle uncer-
tainty in the mean arrival rate. The key idea in our ap-
proach is that by considering a special class of job size
distributions, the 2-phase degenerate hyperexponential dis-
tribution, we are able to incorporate the effect of job size
variability in our optimization problem, while (Q(t), K(t))
remains a Markov process. Thus, the control policies we ob-
tain are a function only of (Q(t), K(t)). Via simulations we
show that both Light-Approx and Poisson-Approx are
robust at adapting to unknown mean arrival rate, resulting
in near-optimal mean response time (under 19%) for a wide
range of arrival rates when compared to the optimal static
MPLs for each arrival rate.

Next, we consider the setting where not only is the mean
arrival rate not known, but the arrival process is also bursty.
We demonstrate that both Light-Approx and Poisson-
Approx are simultaneously robust to unknown mean ar-
rival rate and burstiness of the arrival process, resulting in
less than 25% higher mean response time than the mean
response time for the optimal traffic-aware static MPL. Sur-
prisingly, we find that if the mean arrival rate is known, a
static MPL optimized for a Poisson arrival process with the
given mean arrival rate is also near-optimal when the arrival
process is bursty with that mean arrival rate (that is, the in-
terarrival times are i.i.d. but not Exponentially distributed).
However, burstiness can greatly worsen the performance of
static policies when the mean arrival rate is unknown.

Outline
In Section 2, we solve the problem of choosing the optimal
static MPL for a general job size distribution under the as-
sumption that the arrival process is Poisson with a known
mean arrival rate. In Section 3, we begin by demonstrating
that the approach of choosing a single static MPL is funda-
mentally limited in its ability to handle variability in traffic
arrival patterns. In Sections 3.2 and 3.3, we construct our
dynamic MPL control policies Light-Approx and Poisson-
Approx, respectively. In Section 3.4, we evaluate these dy-
namic policies with respect to (i) robustness to unknown
arrival rate, and (ii) robustness to burstiness of the arrival
process. Finally we compare our traffic-oblivious dynamic
policies to the optimal traffic-aware static MPL policy.



2. CHOOSING THE BEST STATIC MPL
Our first goal in this paper is to address the question of

how to optimally set a multi-programming limit in a resource-
sharing system so as to minimize the mean response time
(equivalently, minimize the mean number of jobs in the sys-
tem). We assume that the arrival process is Poisson with
a known mean arrival rate, and that the job size distrib-
ution is known. In Section 2.1, we present some stochas-
tic monotonicity results for the performance of PS-MPL
systems under fairly general job size distributions which
motivate the need to appropriately choose the MPL based
on the job size distribution. In Section 2.2, we provide a
simple approximation for the mean number of jobs in an
M/G/PS-MPL system with state-dependent service rate in-
volving only the first two moments of the job size distribu-
tion, and demonstrate a job size distribution for which the
approximation is, in fact, exact. In Section 2.3, we present
the Opt-Static policy, which uses our approximation to
choose a static MPL based on the mean arrival rate and the
first two moments of the job size distribution. Even though
our approximation involves only the first two moments of
the job size distribution, we show via experiments that it
leads to optimal or near-optimal MPL selection for a range
of distributions used to model computer workloads.

2.1 Stochastic monotonicity results
Let F be a distribution function for a non-negative ran-

dom variable X, and f be the corresponding density func-
tion.

Definition 1. Distribution F is said to belong to the class

DFR (IFR) if the function h(x) = f(x)
1−F (x)

is decreasing (in-

creasing).

Definition 2. Distribution F is said to belong to the class
DMRL (IMRL) if the function R(a) = E[X − a|X ≥ a] is
decreasing (increasing).

The classes IMRL (Increasing Mean Residual Life, also
referred to as NWUE for New Worse than Used in Expecta-
tion) and DFR (Decreasing Failure Rate) both capture the
notion that young jobs (those who have received less service)
are more likely to finish earlier than old jobs. The condition
DFR is equivalent to saying that the residual life of young
jobs is stochastically smaller than the residual life of old jobs,
while IMRL is equivalent to saying that the mean residual
life of young jobs is smaller than the mean residual life of
old jobs.

The following is a corollary of [19, Theorem 1].

Proposition 1. In a G/G/PS-MPL system with a DFR
job size distribution, the number of jobs in the system at any
time is a stochastically decreasing function of the MPL K,
for K ≤ K∗. For an IFR distribution, the number of jobs
in the system is a stochastically increasing function of the
MPL K, for K ≥ K′.

A similar proposition can be proven for the mean number
of jobs (equivalently mean response time) by relaxing the
assumptions on the arrival process and the job size distrib-
ution.

Proposition 2. In an M/G/PS-MPL system with an IMRL
job size distribution, the mean number of jobs in the system
is a decreasing function of the MPL K, for K ≤ K∗. For a
DMRL distribution, the mean number of jobs in the system
is an increasing function of the MPL K, for K ≥ K′.

Proof. From [22, Theorem 3.14], for IMRL distributions,
it suffices to prove that for all x, V̄x, which denotes the mean
workload in the system due to jobs with attained service less
than x, is decreasing in the MPL K for K ≤ K∗. From the
proof of [19, Theorem 1], this is easily seen to hold. The
proof for DMRL distributions is analogous.

Intuitively, when the job size distribution is DFR or IMRL,
we prefer to serve young jobs as they are more likely to
finish earlier. By choosing an MPL smaller than K∗, we
do not gain serving capacity, since K∗ achieves the max-
imum speed, and simultaneously limits the ability of new
jobs (which are likely to be small) to enter service. Simi-
larly, for IFR or DMRL job size distributions, we prefer to
serve old jobs as they are more likely to finish earlier. By
choosing an MPL larger than K′, we do not gain aggregate
serving capacity, and we simultaneously reduce the capacity
available to old jobs, as young jobs are allowed into service.
Job size distributions belonging to class DFR and IMRL cor-
respond to distributions which are more variable than the
Exponential distribution, and the above results show that
there is no benefit in running at an MPL smaller than K∗

in this case. However, there might be benefit in operating
at an MPL higher than K∗, increasing the chance for small
jobs to enter service and finish quickly even while losing ag-
gregate service capacity in the process, as we show next.

2.2 2-moment approximation forM/G/PS-MPL
As mentioned earlier, there are no known analytical ex-

pressions or approximations for the mean number of jobs in
an M/G/PS-MPL system with state-dependent service rate.
We now propose a simple approximation for the mean num-
ber of jobs in an M/G/PS-MPL system involving only the
first two moments of the job size distribution.

Proposition 3. Let E[N ] denote the mean number of
jobs in an M/G/PS-MPL system with arrival rate λ, state-
dependent service rate µ(n) when there are n jobs at the PS
server, with MPL=K, and a general job size distribution
with mean 1 and SCV C2. Then,

E[N ] ≈ E
h
NS

Exp(K)
i

+
C2 + 1

2
E
h
NQ

Exp(K)
i

(1)

where E
h
NQ

Exp(K)
i

and E
�
NS

Exp(K)
�
, respectively, denote

the mean number of jobs in the FCFS Queue and at the PS
Server in an M/M/PS-MPL with the same state-dependent
service rates as the original M/G/PS-MPL system, with MPL=K
and Exponential job size distribution with mean 1. The ex-

pressions for E
h
NQ

Exp(K)
i

and E
�
NS

Exp(K)
�

are given by:

E
h
NQ

Exp(K)
i

=
φK+1

1 +
P∞

i=1 φi

 
1

1− λ
µ(K)

!2

E
h
NS

Exp(K)
i

=

PK
i=1 i · φi + K ·

P∞
i=K+1 φi

1 +
P∞

i=1 φi

where φi’s are the ratio of the stationary probabilities and
the idle probability for an M/M/PS-MPL, and are given by:

φi =

8<
:

Πi
j=1

λ
µ(j)

1 ≤ i ≤ K,

φK ·
�

λ
µ(K)

�i−K

i > K.

Proposition 3 can be seen as a generalization of the Lee and
Longton [17] approximation for the mean number of jobs in



an M/G/K system, and agrees with the approximation given
by [3] when the service rate is independent of the state. In
Proposition 4, we show that approximation (1) is in fact
exact for a degenerate hyperexponential distribution, H∗,
with mean 1 and squared of coefficient of variation C2.

Definition 3. A degenerate hyperexponential distribution
with mean 1 and SCV C2 is defined by:

H∗(C2) ∼

(
0 with probability 1− q = C2−1

C2+1

Exp
�

2
C2+1

�
with probability q = 2

C2+1

where Exp(ν) denotes an Exponential random variable with
mean 1/ν.

Proposition 4. The mean number of jobs in an
M/H∗(C2)/PS-MPL system with arrival rate λ, state-dependent
service rate µ(n) when there are n jobs at the PS server, and
MPL=K is given by:

E
�
NH∗(C2)(K)

�
= E

h
NS

Exp(K)
i

+
C2 + 1

2
E
h
NQ

Exp(K)
i

where E
h
NQ

Exp(K)
i

and E
�
NS

Exp(K)
�
are as defined in Propo-

sition 3.

Proof. We first observe that the H∗(C2) distribution
consists of two classes of jobs, those of size 0 and those be-
longing to the Exponential branch. The response time and
hence the number of jobs belonging to the Exponential class
in the M/H∗(C2)/PS-MPL system is not affected by the
presence of zero-sized jobs. Therefore, the contribution to
the mean number of jobs in the system consisting of jobs in

the Exponential class is precisely E
�
NS

Exp

�
+E

h
NQ

Exp

i
. The

zero-sized jobs only contribute to the mean number in queue.
However, since the scheduling policy is size-independent, the
waiting time distribution of a zero-sized job is the same as
the waiting time distribution of a job belonging to the Expo-

nential class, but the arrival rate of zero-sized jobs is C2−1
2

times the arrival rate of the Exponential class. Therefore,
the contribution of the zero-sized jobs to the mean number

in system is C2−1
2

E
h
NQ

Exp

i
, proving the proposition.

In Section 2.4 we extend Proposition 3 to obtain an approx-
imation for a GI/G/PS-MPL system involving the first two
moments of the interarrival time and job size distributions.

2.3 TheOpt-Static policy
We now introduce the Opt-Static policy to choose a

near-optimal static MPL. The Opt-Static policy simply
sets MPL = κ where κ denotes the MPL that minimizes the
right hand side of (1):

κ = arg min
K

�
E
h
NS

Exp(K)
i

+
C2 + 1

2
E
h
NQ

Exp(K)
i�

(2)

We now show that the Opt-Static policy is a good heuris-
tic for minimizing the mean response time in an M/G/PS-
MPL system with known mean arrival rate. In Figure 3,
we present simulation results for the following three job size
distributions all with mean 1 and C2=19 :

• Weibull distribution with scale parameter 1
6

and shape

parameter 1
3
.

• Bounded Pareto distribution with shape parameter α =
1.1 and support [0.182, 178.759].

• A two-phase hyperexponential (H2) distribution whose
parameters are chosen so that, r, the fraction of the
total load constituted by the phase with the smaller
mean, is 0.25.

The results in Figure 3 assume that the state-dependent
service rates of the PS server are given by the µ(n) curve
shown in Figure 1. We will use the service rate curve shown
in Figure 1 in all the numerical and simulation evaluations
in this paper. In [11], we present detailed simulation results
for more scenarios.

The main message of Figure 3 is that the optimal MPL
can be much larger than the peak efficiency MPL of K∗ = 5.
For example, when λ = 0.8, the optimal static MPL for
the bounded Pareto distribution is 11 with a resulting mean
number of jobs around 3.4, while K∗ = 5 results in 35%
larger mean number of jobs at approximately 4.6. Second, as
can be seen, even though approximation (1) is not extremely
accurate at predicting the mean number of jobs in the system
for general distributions (in fact, it is possible to show that
no approximation based on only the first two moments can
be), it is robust in predicting the optimal or near-optimal
MPL. Our approximation recommends MPL = 14 and the
mean number of jobs in the system using our recommended
MPL is around 3.45.

Using approximation (1), it is easy to see why the mean
number of jobs in the system is minimized at a larger MPL
than the peak efficiency MPL of K∗ when job sizes have
high variability. To see this, start by considering the case
of low variability: C2 = 1. For this case, approximation
(1) suggests that the optimal MPL is in fact K∗. As we
increase the MPL beyond K∗, if the traffic intensity is not

very high, E
h
NQ

Exp

i
falls while E

�
NS

Exp

�
increases. For a

high enough C2, the fall in C2+1
2

E
h
NQ

Exp

i
, and hence in the

mean waiting time in the FCFS buffer, will be larger than
the rise in E

�
NS

Exp

�
, which is the component representing

the mean time to process a job at the PS server. Therefore,
setting an MPL higher than K∗, and allowing small jobs to
overtake the big jobs, leads to an overall reduction in the
mean response time.

We would like to point out that the question of choosing
the optimal multi-programming limit is closely related to
the question of choosing the optimal number of servers in
a multiserver system (that is, one fast vs. K slow servers),
such as the M/G/K, but with a fundamentally different
trade-off. In the presence of highly variable job sizes, one
wants to choose a large number of servers in a multiserver
system to prevent small jobs from getting blocked behind
large jobs. Similarly, in the PS-MPL system, we want to
choose a high MPL to allow small jobs to overtake large
jobs. In both cases, we are limited in our ability to increase
the parallelism due to capacity wastage. While in a multi-
server system, capacity is wasted when there are less than
K jobs in the system, in the PS-MPL system, capacity is
wasted when the multi-programming limit K is set larger
than the peak efficiency point K∗, and there are more than
K∗ jobs in the system. Therefore, in a multiserver system,
high parallelism (large number of servers) is preferred when
the traffic intensity is high, while in a PS-MPL system a
high degree of parallelism (large MPL) is preferred when
the traffic intensity is low.

2.4 Approximation for GI/G/PS-MPL
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Figure 3: The mean number of jobs in the system vs. MPL for the following distributions, all with mean 1 and SCV 19:

(i) Bounded Pareto distribution with shape parameter 1.1 (ii) Weibull distribution (iii) Two-phase hyperexponential

distribution with 25% of load constituted by the branch with the smaller mean. The arrival process considered is

Poisson with the indicated mean arrival rate, λ. For reference, we have also shown our 2-moment approximation for

the mean number of jobs in the system. The optimal MPL for each curve is shown with a circle.

Proposition 5. Let E[N ] denote the mean number of
jobs in a GI/G/PS-MPL system with state-dependent ser-
vice rate µ(n) when there are n jobs at the PS server, MPL=K,
a general job size distribution with mean 1 and SCV C2

s ≥ 1,
and a general interarrival time distribution with mean 1

λ
and

SCV C2
a ≥ 1. Then,

E[N ] ≈ E
h
N ′S

Exp

i
+

C2
s + 1

2
E
h
N ′Q

Exp

i

where E
�
N ′S

Exp

�
and E

h
N ′Q

Exp

i
, denote, respectively, the mean

number of jobs at the PS Server and in the FCFS Queue in
a BPP/M/PS-MPL system with the same state-dependent
service rates as the original GI/G/PS-MPL system, MPL=K,
Exponential job size distribution with mean 1, mean arrival

rate λ and i.i.d. geometric batch sizes with mean
C2

s+C2
a

C2
s+1

.

The expressions for E
�
N ′S

Exp

�
and E

h
N ′Q

Exp

i
are given by

E
h
N ′S

Exp

i
=

PK
i=1 i · φi + K ·

P∞
i=K+1 φi

1 +
P∞

i=1 φi
(3)

E
h
N ′Q

Exp

i
=

φK+1

1 +
P∞

i=1 φi

�
C2

s + C2
a

(C2
s + 1)(1− γ)

�2

(4)

where

φi =

8<
:

Πi
j=1

λ·(C2
s+1)+µ(j−1)·(C2

a−1)

(C2
s+C2

a)µ(j)
1 ≤ i ≤ K

φK ·
�

γ·(C2
s+1)+C2

a−1

C2
s+C2

a

�i−K

i > K

and γ = λ
µ(K)

.

3. SELF-ADAPTIVE MPL CONTROL
POLICIES

In the previous section, we considered the question of
choosing the optimal static MPL under the assumption that
the arrival process is Poisson, and that the mean arrival rate,
λ, was known accurately. We begin this section by showing
that the methodology of choosing a static MPL based on
assuming a mean intensity for the Poisson arrival process
is very fragile. In Table 1 we consider a Weibull job size
distribution with mean 1 and C2 = 19, and show the mean
number of jobs in the system for various settings of MPL and
the mean arrival rate λ. We assume the service rate curve

shown in Figure 1 with K∗ = 5. The optimal MPL in Ta-
ble 1 varies from 15, when λ = 0.65, to 5, when λ = 1.15. In
fact, choosing the optimal static MPL assuming a λ ≤ 0.85
results in an unstable system when true λ = 1.15.

There can be two ways around this problem: The first ap-
proach is to robustly choose a single static MPL that works
well for all λ. This necessarily implies operating the system
at peak efficiency K∗, which we have already seen can be far
from the optimal. The second approach is to learn the pa-
rameters of the arrival process and then choose the optimal
static MPL for that particular arrival process. However, this
approach will fail to adapt to variations in traffic on small
time scales.

In this section, we are motivated by the question:

Are there light-weight, traffic-oblivious MPL con-
trol policies which perform as well as the traffic-
aware optimal static MPL policies?

By a traffic-oblivious control policy, we mean a policy that
does not depend on knowing the arrival rate or the higher
order characteristics of the arrival process.

In this section, we develop two dynamic MPL control poli-
cies - Light-Approx and Poisson-Approx. Section 3.1
highlights the key ideas in our approach. Section 3.2 and
Section 3.3, respectively, present the numerical algorithms
involved in the construction of our traffic-oblivious dynamic
MPL control policies Light-Approx and Poisson-Approx.
In Section 3.4 we evaluate our dynamic MPL control policies
via simulations and demonstrate that our proposed MPL
control policies exhibit robustness to both the traffic inten-
sity and the burstiness of the arrival process.

3.1 Key Steps in Our Approach
Recall that, given a job size distribution, our goal is to

obtain MPL control policies which are (i) light-weight: ad-
just the MPL based only on the instantaneous queue length,
Q(t), and the instantaneous MPL, K(t), and (ii) traffic-
oblivious: robust to variations in the arrival process.

To achieve our first goal, we consider a special class of job
size distributions, the degenerate hyperexponential distrib-
ution (H∗), which is a mixture of an Exponential distrib-
ution, and a point mass at 0. Since the jobs of size 0 do
not spend any time at the server, and due to the memory-
less property of the Exponential distribution, (Q(t), K(t)) is



MPL 4 5 6 7 8 9 10 11 12 13 14 15 95% c.i.

λ = 0.65 2.960 2.471 2.258 2.149 2.092 2.058 2.040 2.029 2.023 2.020 2.018 2.016 ± 0.007
λ = 0.75 4.849 3.889 3.442 3.177 3.000 2.896 2.843 2.797 2.775 2.764 2.755 2.764 ± 0.020
λ = 0.85 8.493 6.797 6.025 5.542 5.226 4.984 4.903 4.850 4.929 5.019 5.217 5.589 ± 0.294
λ = 0.95 15.961 13.197 12.521 12.162 12.170 12.633 13.497 15.039 18.059 23.132 32.881 60.799 ± 2.483
λ = 1.05 33.929 29.517 31.082 34.989 40.705 52.554 72.724 126.900 ± 4.273
λ = 1.15 92.842 87.189 114.997 183.613 ± 5.606

Table 1: Numerical results for mean number of jobs in system for different values of MPL and arrival rates. The

arrival process was Poisson, and the job size distribution was Weibull with mean 1, SCV 19. The optimal value for

each setting of the mean arrival rate has been boldened.

a Markov process. This ensures that we can obtain a light-
weight dynamic MPL control policy, since any optimal MPL
control policy for the H∗ job size distribution will only take
decisions based on (Q(t), K(t)).

The next step in our approach is solving a stochastic dy-
namic programming problem to construct families of can-
didate dynamic MPL control policies. The Light-Approx
and Poisson-Approx policies differ in the family of candi-
date policies. Under Light-Approx, the family of candi-
date policies is a set, {πp}, where a particular policy πp is
constructed by solving an optimal MPL control problem for
an H∗ job size distribution with parameter p (Eqn. (7)).
Thus, while there is some unique H∗(C2) job size distrib-
ution that matches the first two moments of the true job
size distribution (Definition 3), the family is constructed by
looking at a range of H∗ distributions. To solve the opti-
mal control problem, we assume that we start in some initial
state (Q0, K0), and find the policy that minimizes the sum
of response time of jobs in the system given that there are no
further arrivals. In the case of Poisson-Approx, the fam-
ily of candidate policies is the set, {πλp}, where a particular
policy πλp is obtained by solving an optimal control prob-
lem for a Poisson arrival process with intensity λp and the
H∗(C2) job size distribution to minimize the time-average
mean number of jobs in the system.

The final step in our approach is choosing one member
from the family of candidate dynamic policies, so that the
chosen policy is robust to the arrival process. To achieve this
goal, we evaluate the candidate policies in the family for a
Poisson arrival process with rate λ ∈ [λ, λ] and H∗(C2) job
size distribution. Let E[N∗(λ)] denote the mean number of
jobs in the system for Poisson arrival process with intensity
λ, and H∗(C2) job size distribution, under the Opt-Static
policy. The quantity E[N∗(λ)] is given by Proposition 4. Let
E[Nπ(λ)] denote the mean number of jobs in the system for
the H∗(C2) job size distribution and Poisson arrival process
with intensity λ under a dynamic MPL control policy π. We
define the worst-case relative error for a policy π as:

ε(π) = max
λ∈[λ,λ]

E[Nπ(λ)]−E[N∗(λ)]

E[N∗(λ)]
(5)

Given a family of candidate policies {πa} with parameter
a taking values in some set A, we choose the policy that
minimizes the worst case relative error:

a∗ = arg min
a∈A

ε(πa) (6)

Thus, in our case, πp∗ denotes the Light-Approx policy,
and πλ∗p denotes the Poisson-Approx policy.

3.2 TheLight-Approx policy

As a first step towards deriving the Light-Approx pol-
icy, we begin in Section 3.2.1 by formulating and solving a
light-traffic optimal MPL control problem. We find that the
solution to this problem exhibits both a fluid component, to
guarantee stability, and a stochastic component, to handle
variability in job sizes. In Section 3.2.2, we use the solution
of the light-traffic optimal control problem to construct a
family, {πp}, of simple, light-weight MPL control policies,
and in Section 3.2.3 we sketch the use of Matrix-Geometric
methods to evaluate this family of candidate policies to en-
able selection of the appropriate policy, Light-Approx.

3.2.1 A light-traffic optimal control problem
In this section we solve an optimal light-traffic MPL con-

trol problem parameterized by p, by considering the follow-
ing degenerate hyperexponential job size distribution :

H∗(p) ∼

(
0 with probability p

Exp (1) with probability 1− p
(7)

We assume that we start our PS-MPL system in some
state (Q0, K0) at time t = 0, where a departure has taken
place at time t = 0−. The state variable Q0 denotes the
queue length at t = 0− and K0 is one more than the number
of jobs at the PS server left behind by the last departure. We
assume that multiple zero-sized jobs admitted at the same
time leave together. Thus K0 does not necessarily denote
the MPL at time t = 0−. However, by our assumption of
an H∗(p) job size distribution, each of the (K0 − 1) jobs at
the server has remaining service requirement independent
and identically distributed as Exp(1). Note that while the
zero-sized jobs do not spend any time at the server, they
still experience delays while waiting in the FCFS buffer. We
assume that there are no more arrivals (hence the light-
traffic). We can now take one of the following actions at
time t = 0:

1. Decrease MPL: We do not admit another job from
the queue into the PS server, decreasing the MPL to
K0 − 1.

2. Keep MPL same: We admit only one job from the
queue into the PS server to replace the departing job,
maintaining the MPL at K0.

3. Increase MPL by k: We admit k + 1 jobs from the
queue into the PS server, increasing the MPL to K0+k.

Our aim is to take the optimal action in each state so as to
achieve the following goal:

Minimize the expected sum of response times of jobs present
in the system at time t = 0, given that there are no further
arrivals.



If our goal was to minimize the time until the system emp-
ties, the optimal control would be to operate at MPL of K∗.
However our performance metric is the mean response time.
Note that we do not allow preempting an executing job to
decrease the MPL. This is important because in a trans-
action processing system, for instance, killing an executing
task involves unrolling the execution trace for the task and
is significantly expensive. In our framework, we can only
alter the MPL when a job departs, and hence we assume
that there are no costs associated with changing the MPL.

The solution of the above optimal-control problem can
be obtained in a straightforward fashion via stochastic dy-
namic programming. To do so, we associate a cost function
c(Q, K) with each state (Q, K), which represents the opti-
mal expected sum of response times, given that we start in
state (Q, K) at time t = 0, and an action function π(Q, K),
representing the optimal action in state (Q, K). The func-
tion π(Q, K) takes values in the range {−1, 0, 1, 2, . . .} with
−1 representing the action ‘decrease MPL’, 0 representing
the action ‘keep MPL same’ and k > 0 representing the
action ‘increase MPL by k’.

The cost of the states with zero queue length is simply:

c(0, K) =

K−1X
i=1

i

µ(i)
(8)

To see why the above is true, note that since the queue is
empty and we do now allow preemption of executing jobs,
the cost of state (0, K) is the expected sum of response times
of the K − 1 jobs executing at the server. The mean time
until the departure of the first job is given by 1

µ(K−1)
since

the server is processing at rate µ(K − 1). The time until
the first departure gets added to the response time of all the
jobs in the system, and contributes K−1

µ(K−1)
to c(0, K), and

so on for subsequent departures.
We represent by c−1(Q, K) the cost of state (Q, K) given

that we take action ‘decrease MPL’ in state (Q, K). Simi-
larly, ck(Q, K) (k ∈ {0, . . . , Q−1}) denotes the cost of state
(Q, K) given that we take action ‘increase MPL by k’ in
state (Q, K). Given c−1(Q, K) and ck(Q, K), the optimal
action π(Q, K) and the cost function c(Q, K) are:

π(Q, K) = arg min
δ

cδ(Q, K) δ ∈ {−1, . . . , Q− 1} (9)

c(Q, K) = cπ(Q,K)(Q, K) (10)

The function c−1(Q, K) is given by:

c−1(Q, K) =
Q + K − 1

µ(K − 1)
+ c(Q, K − 1) (11)

and ck(Q, K) is given by:

ck(Q, K) =

�
Q + K − 1

µ(K + k)
+ c(Q− k − 1, K + k)

�
· (1− p)k+1

+

k+1X
i=1

c(Q− k − 1, K + k + 1− i) ·
�

k + 1
i

�
(1− p)k+1−ipi

(12)

In deriving the last equation, we have made use of the as-
sumption that if multiple zero-sized jobs are admitted si-
multaneously, then they all leave together. This maintains
the invariant that the K in state descriptor (Q, K) is one
larger than the number of jobs at the server belonging to

the Exponential class, and we do not have to keep track or
estimate the number of zero-sized jobs.

While in the problem formulation above, we have not im-
posed an upper bound on k, in practice we restrict k ≤ ∆max

to prevent sudden jumps in MPL. For all the simulation re-
sults in this paper, we set ∆max = 1.

3.2.2 A family of traffic-oblivious MPL control poli-
cies

In Section 3.2.1 we formulated an optimal control problem
parameterized by p, the fraction of zero-sized jobs in the
H∗(p) job size distribution. By varying the parameter p, we
obtain a family of MPL control policies. Let πp denote the
action function for the control problem with parameter p.
Figure 4 shows the structure of πp for p = 0.3 and p = 0.5
and the service rate curve shown in Figure 1. For example,
if the current state is (Q = 21, K = 10), under the p =
0.3 policy, the control is to decrease the MPL to 9 by not
admitting a new job, while under p = 0.5 policy, the optimal
control is to increase the MPL to 11 by admitting two jobs.
The structure of the optimal solution has some interesting
features:

1. For a given p, there is some minimum queue length
Q(p) such that the optimal action for Q > Q(p) is to
operate at the peak efficiency point. In Figure 4(a),
Q(p) = 20 and the optimal control for Q > Q(p) is to
attain the peak efficiency MPL of K∗ = 5. We call
this the fluid component of the control policy. This
fluid component provides robustness to the dynamic
MPL policy against high arrival rates. Further, as p
increases, the threshold Q(p) increases.

2. As the queue length decreases, the stochastic compo-
nent of the control takes over, gradually increasing the
MPL to a point with lower service rate than the most
efficient point. This stochastic component gives our
MPL control policy the ability to combat the job-size-
variability when the traffic intensity is low.

The structure of the optimal control is quite intuitive.
Whenever a decision to increase the MPL has to be taken,
there are two scenarios: (i) with probability p the admitted
job is of size zero in which case the decrease in server speed
does not hurt any one, and (ii) with probability 1 − p, the
admitted job belongs to the Exponential class and in this
case adds to the waiting time of everyone in the queue. If
we define the ‘threshold queue length’ to be the point when
we should increase the MPL and move to a less efficient
service rate, then we see that this threshold queue length is
an increasing function of p.

Given any action function π, we can translate it into a
dynamic MPL control policy via the procedure in Figure 5.

The Light-Approx control policy for a distribution with
SCV C2 is now chosen to be πp∗ such that:

p∗ = arg min
p

ε(πp) (13)

where ε(·) is given by (5). Experimentally, it suffices to carry
out the optimization over a small set of parameters p (at a
coarse granularity).

3.2.3 Evaluation of dynamic MPL control policies
via Matrix-geometric analysis
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Figure 4: The structure of the Light-Approx control policy for two values of the parameter p and ∆max = 1. A ‘+’

indicates ‘increase MPL’, and a ‘o’ indicates ‘keep MPL same’. At every other point, the optimal control is to decrease

MPL.

Algorithm MPL control(π)
Case: New arrival

• Let Q be the queue length and K be the MPL im-
mediately after the arrival.

• Let π(Q, K + 1) = k

– if k ≥ 0: admit k +1 jobs from the head of the
FCFS buffer into the server and increase MPL
to K + k + 1

– if k < 0: do nothing

Case: Departure

• Let Q be the queue length and K be the MPL im-
mediately before the departure.

• Let π(Q, K) = k

– if k ≥ 0: admit k + 1 jobs from the head of
the FCFS buffer into the server and set MPL
to K + k

– if k < 0: reduce MPL to K − 1 by not admit-
ting any job from the FCFS buffer

Figure 5: The dynamic MPL control policy obtained

from the action function π.

In this section, we outline a method to numerically evalu-
ate the mean number of jobs, E[Nπ(λ)], for a dynamic MPL
control policy π under the assumption of the H∗(C2) job size
distribution (Definition 3) and a Poisson arrival process of
intensity λ. Note that in Proposition 4 with static MPL, we
were able to simplify the analysis of the H∗(C2) job size dis-
tribution by ignoring the zero-sized jobs and focusing on the
exponential class. This was because the admission control
policy was independent of the queue-length. However, with
a dynamic policy that looks at the queue-length, we need to
keep track of how many zero-sized jobs are in the system.
For succinctness, let q = 2

C2+1
.

Assuming that under the dynamic policy π, there is some
queue-length Q∗ such that the optimal control for any queue
length Q ≥ Q∗ is to operate at the highest efficiency point
K∗, we can express the system as a Markov chain with a
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Figure 6: The embedded Markov chain for evaluation

of dynamic MPL control policies. We use an to denote
λ

λ+q·µ(n)
and dn = 1−an. For decision states with multiple

alternatives (e.g., (1, K+−1, ?) and (2, K∗−1, ?)), the dash-

dotted arcs correspond to the decision to not admit any

jobs, dashed arcs correspond to the decision to admit

one job, and dotted arcs correspond to the decision to

admit two jobs.

repeating structure. The states of the Markov chain are
pairs (Q, K) with Q denoting the queue length, and K de-
noting the number of jobs of the exponential class at the
server. However, due to the zero-sized jobs, we can have
arbitrarily big drops in Q. For example, if we are in state
(Q = 10, K = 5) and a departure takes place, and if all
the jobs in the queue have size 0, which happens with non-
zero probability, we jump to state (Q = 0, K = 4). To



take care of this problem, we introduce decision states rep-
resented as (Q, K, ?). We transition to the decision state
(Q, K, ?) immediately after a departure takes place from the
state (Q, K + 1), or if an arrival takes place while in state
(Q−1, K) and Q < Q∗. The state (Q, K, ?) implements the
admission control policy π, as well as handling zero-sized
jobs, because now the jumps are bounded. For example, if
the control in state (Q, K, ?) is to admit 1 job, then with
probability (1 − q) the job is of size 0, and we transition
to (Q− 1, K, ?); otherwise, with probability q we transition
to (Q − 1, K + 1). However, the rate of transitioning from
the decision states is infinite. Thus we will find it suitable
instead to work in the framework of Semi-Markov processes.
We will consider the embedded discrete time Markov chain
where the transitions correspond to arrivals, departure and
decisions taken in decision states in the original continuous
time system. The embedded Markov chain is shown in Fig-
ure 6. We then solve for the stationary distribution of this
embedded Markov chain via Matrix-Geometric method. We
would like to point out that due to the special structure
of the Markov chain in Figure 6 (the backward transition
matrix is of rank 1), the rate matrix involved in the Matrix-
geometric solution has an explicit solution in our case [20].
Finally, we obtain the stationary distribution of the number
of jobs in the system by multiplying the probability of being
in a state in the embedded chain with the mean residence
time in that state, and normalizing.

3.3 ThePoisson-Approx policy
The Poisson-Approx policy is defined by constructing a

family {πλp}, where the candidate policy πλp is obtained as
follows: We consider a Poisson arrival process of intensity λp

and the H∗(C2) job size distribution, and solve the optimal
dynamic MPL control problem to minimize the mean num-
ber of jobs. The policy πλp is computed via the method of
policy iteration, explained in Appendix A. Figure 7 shows
the structure of πλp for λp = 0.95 and λp = 1.05. The
Poisson-Approx MPL control policy is now chosen to be
πλ∗p where:

λ∗p = arg min
λp

ε(πλp) (14)

where ε(·) is defined in (5). As in the case of Light-Approx,
it suffices to carry out the above optimization at a coarse
granularity.

3.4 Performance Evaluation
In this section we show via simulations that our dynamic

MPL control policies proposed in Sections 3.2 and 3.3 guar-
antee robustness against both misestimation of traffic inten-
sity, and against higher order characteristics of the arrival
process, such as the burstiness.

3.4.1 Robustness against traffic intensity estimation
We will now evaluate the Light-Approx and Poisson-

Approx policies for a Poisson arrival process with unknown
mean arrival rate, λ, and compare them against the Opt-
Static policy that is given the exact mean arrival rate. To
do this, we show the mean number of jobs, E[N ], under dif-
ferent arrival rates, obtained via simulations. Recall that
Table 1 shows these results for the Weibull job size distri-
bution and various values of static MPLs. In Table 2 we
show the results for the mean number of jobs for the same

Weibull job size distribution under the Light-Approx pol-
icy, as a function of λ and the parameter p of the family {πp}
of candidate policies. The optimization procedure (13) sets
p∗ = 0.25 from among the values shown in the table (col-
umn highlighted). Observe that the Light-Approx policy
gives near optimal performance for each arrival rate as com-
pared to Table 1 for λ up to 1.05 with approximately 13%
larger mean number of jobs in the system than the opti-
mal traffic-aware static policy when λ = 0.85. On the other
hand, a single robustly chosen static MPL necessarily has to
operate at the peak efficiency point and, as Table 1 shows,
exhibits 41% larger mean response time than the optimal
traffic-aware static policy when λ = 0.75.

Table 3 shows simulation results for the mean number
of jobs with the Poisson-Approx MPL control policy for
various values of the parameter λp for the family {πλp} of
candidate policies. The optimization procedure (14) sets
λ∗p = 0.95 from among the values shown in the table (column
highlighted). The Poisson-Approx policy also achieves
near-optimal performance for each arrival rate as compared
to Table 1 with approximately 19.5% larger mean number
of jobs in the system than the optimal traffic-aware static
policy when λ = 1.15. Note that for these results, we have
not completely optimized the λp parameter, and the perfor-
mance of the Poisson-Approx policy is likely to improve
further.

While we have seen that both dynamic policies are far
superior than any static policy when the mean arrival rate is
not known, looking both at Tables 2 and 3, one can observe
that neither dynamic policy significantly outperforms the
Opt-Static policy if the mean arrival rate is known.

3.4.2 Robustness against burstiness in arrival process
with unknown arrival rate

We now evaluate the robustness of our MPL control poli-
cies against burstiness of the arrival process when the mean
arrival rate is not known. To do so, we choose a batch Pois-
son arrival process (BPP). The batch sizes were i.i.d. geo-
metric with mean 5. Table 4 shows the results for the mean
number of jobs in the system with Weibull job size distribu-
tion for various settings of static MPL and mean arrival rate
λ of the arrival process. From Table 4, we see that when the
arrival rate is not known, a robustly chosen static policy has
to operate at K∗ = 5, which results in 50% higher mean
number of jobs than the optimal traffic-aware static policy
when the mean arrival rate is λ = 0.65. Therefore a bursty
arrival process can exacerbate the inadequacy of static MPL
policies when the mean arrival rate is not known.

Table 5 shows the results for mean number of jobs in
the system for the same setting as Table 4 for the Light-
Approx MPL control policy as a function of the parameter
p of the family {πp} of candidate policies for various values
of the mean arrival rate λ. The column for the parameter
chosen by the Light-Approx policy has been highlighted.
From Table 5, we find that Light-Approx policy is also ro-
bust to burstiness, while yielding at worst 25% higher mean
response time than the optimal traffic-aware static MPL pol-
icy. Therefore, the Light-Approx policy is simultaneously
robust to both the mean arrival rate and burstiness of the
arrival process. The Light-Approx policy with parameter
p = 0.3 outperforms the policy with p = 0.25 for the chosen
setting, but as noted earlier, this is due to the fact that we
have not optimized the parameter completely.
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Figure 7: The structure of the Poisson-Approx control policy for two values of the parameter λp and ∆max = 1. A

‘+’ indicates ‘increase MPL’, and a ‘o’ indicates ‘keep MPL same’. At every other point, the optimal control is to

decrease MPL.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% conf. int.

λ = 0.65 2.146 2.068 2.037 2.026 2.020 2.018 2.017 ± 0.004
λ = 0.75 3.268 3.034 2.898 2.842 2.803 2.806 2.804 ± 0.015
λ = 0.85 5.939 5.502 5.222 5.138 5.188 5.330 5.497 ± 0.049
λ = 0.95 12.473 12.315 12.312 12.838 13.830 15.480 17.035 ± 0.201
λ = 1.05 29.807 30.731 32.445 35.981 40.748 46.836 53.344 ± 0.381
λ = 1.15 89.075 93.378 99.875 108.300 120.120 132.354 143.678 ± 1.724

Table 2: Simulation results for mean number of jobs, E[N ], for different parameters p of the Light-Approx policy and

arrival rates, λ. The arrival process is Poisson(λ), and the job size distribution is Weibull with mean 1, SCV 19.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% conf. int.

λ = 0.65 2.019 2.017 2.021 2.032 2.134 2.474 ± 0.005
λ = 0.75 2.792 2.768 2.778 2.843 3.192 3.890 ± 0.015
λ = 0.85 5.821 5.241 4.890 4.981 5.656 6.776 ± 0.068
λ = 0.95 20.992 16.737 13.269 11.874 12.100 13.210 ± 0.183
λ = 1.05 66.047 53.765 40.952 33.487 29.675 29.464 ± 0.536
λ = 1.15 166.720 149.052 124.863 104.401 91.015 86.473 ± 1.967

Table 3: Simulation results for mean number of jobs, E[N ], for different parameters λp of the Poisson-Approx policy

and arrival rates λ. The arrival process is Poisson(λ), and the job size distribution is Weibull with mean 1, SCV 19.

Table 6 shows the results for mean number of jobs in the
system under the same setting for the Poisson-Approx
MPL control policy as a function of the parameter λp of
the family {πλp} of candidate policies. The column for
the parameter chosen by the Poisson-Approx policy has
been highlighted. From Table 6, we find that the Poisson-
Approx policy yields at worst 13% higher mean response
time than the optimal traffic aware static MPL policy. Thus
while both our policies are robust to bursty arrival processes,
the Poisson-Approx policy seems to marginally outper-
form the Light-Approx policy. These observations also
hold true for the simulation experiments presented in [11].

While we have demonstrated that our dynamic policies are
much more robust than any static policy in handling bursti-
ness when the mean arrival rate is not known, comparing
Tables 1 and 4, we see that, surprisingly, if the mean arrival
rate of the arrival process is known, the Opt-Static policy
which optimizes for a Poisson arrival process with the given
mean arrival rate remains near-optimal for a bursty arrival
process.

4. CONCLUSION
In this paper we consider the problem of admission con-

trol in a resource-sharing system with load-dependent ser-
vice rates, when the job size distribution is highly variable.

We demonstrate, that counter to common wisdom, impos-
ing a static multi-programming limit (MPL) at the peak ef-
ficiency point is not always optimal for minimizing the mean
response time, and propose a simple rule to choose the opti-
mal static MPL under the assumption that traffic is Poisson
with a known arrival rate.

Next, we show that a static MPL policy can not be ro-
bust to varying traffic patterns, such as the variability in the
mean arrival rate. We propose two simple MPL control poli-
cies, Light-Approx and Poisson-Approx, that adjust the
MPL based on knowledge of only the instantaneous queue
length, not the arrival process. We show that our dynamic
MPL control policies exhibit robustness to both an unknown
mean arrival rate and to burstiness in the arrival process.
Specifically, our dynamic control policies result in mean re-
sponse times within 25% of the mean response time of the
optimal traffic-aware static MPL policy.

Our analysis illuminates several key ideas that are impor-
tant in finding the optimal MPL. While a high arrival rate
requires setting the MPL at the point of peak efficiency,
when the arrival rate is moderate, we find that the opti-
mal MPL is typically much higher than the peak efficiency
point. The reason is that allowing a higher degree of par-
allelism (higher MPL) can alleviate the effect of high job
size variability. In situations where the mean arrival rate is



MPL 4 5 6 7 8 9 10 11 12 13 14 15 95% c.i.

λ = 0.65 5.802 4.853 4.350 3.995 3.755 3.586 3.464 3.374 3.316 3.269 3.250 3.232 ± 0.015
λ = 0.75 9.287 7.799 7.093 6.531 6.176 5.871 5.691 5.564 5.490 5.471 5.472 5.583 ± 0.083
λ = 0.85 15.438 13.205 12.295 11.677 11.383 11.200 11.225 11.437 11.868 12.758 13.908 15.854 ± 0.905
λ = 0.95 27.245 24.048 23.860 24.363 25.173 26.846 29.453 34.285 41.082 54.117 78.139 141.179 ± 3.495
λ = 1.05 53.044 49.187 53.368 60.676 71.380 90.525 130.344 210.054 ± 4.932
λ = 1.15 136.640 131.356 176.238 274.395 ± 7.308

Table 4: Simulation results for mean number of jobs, E[N ], for different values of MPL and mean arrival rates λ. The

arrival process is a batch Poisson process where the arriving batch sizes are geometrically distributed with mean 5,

and the job size distribution is Weibull with mean 1 and SCV 19. The optimal value for each setting of the mean

arrival rate is boldened.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% conf. int.

λ = 0.65 4.396 4.039 3.752 3.537 3.414 3.349 3.327 ± 0.017
λ = 0.75 7.301 6.806 6.395 6.100 5.919 5.901 6.005 ± 0.040
λ = 0.85 12.667 12.262 11.880 11.776 12.024 12.670 13.457 ± 0.104
λ = 0.95 23.836 23.714 24.053 24.974 26.619 29.422 32.592 ± 0.312
λ = 1.05 49.542 50.419 52.110 55.588 60.669 67.073 74.570 ± 0.569
λ = 1.15 133.778 137.341 141.705 149.050 158.226 171.736 182.818 ± 2.458

Table 5: Simulation results for mean number of jobs, E[N ], for different parameters p of the Light-Approx policy and

mean arrival rates λ. The arrival process is a batch Poisson process where the arriving batch sizes are geometrically

distributed with mean 5, and the job size distribution is Weibull with mean 1 and SCV 19.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% conf. int.

λ = 0.65 3.271 3.264 3.309 3.480 4.073 4.851 ± 0.017
λ = 0.75 5.929 5.641 5.636 5.849 6.800 7.828 ± 0.035
λ = 0.85 14.033 12.427 11.426 11.177 12.170 13.170 ± 0.125
λ = 0.95 36.054 30.402 26.075 23.898 23.299 23.932 ± 0.244
λ = 1.05 84.019 71.672 60.758 54.104 49.372 48.831 ± 0.510
λ = 1.15 199.389 180.815 162.219 148.864 135.175 131.729 ± 2.239

Table 6: Simulation results for mean number of jobs, E[N ], for different parameters λp of the Light-Approx policy

and arrival rates λ. The arrival process is a batch Poisson process where the arriving batch sizes are geometrically

distributed with mean 5, and the job size distribution is Weibull with mean 1 and SCV 19.

not known, dynamic MPL policies are needed to moderate
between the effect of the arrival rate and the job size variabil-
ity: when the instantaneous arrival rate is high, the effect of
mean arrival rate dominates the effect of C2, whereas when
the arrival rate is low, the effect of C2 is more dominant.

The techniques presented herein for obtaining simple and
robust optimal control policies are applicable to more gen-
eral stochastic settings. While the majority of literature on
robust dynamic control focuses on solving the corresponding
optimal control problem in the fluid regime, our techniques
allow one to obtain optimal control policies which exhibit
components of both stochastic and fluid control.
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APPENDIX

A. POLICY ITERATION TO CONSTRUCT
CANDIDATE Poisson-Approx POLICIES

The goal of this section is to explain the policy iteration
algorithm to find the optimal MPL control policy πλp , for

a Poisson arrival process with intensity λp and the H∗(C2)
job size distribution matching the true job size distribution

(Definition 3).
Let us first recall how policy iteration works [4]. We be-

gin with some MPL control policy π0 (in our case, a good
initial policy is the threshold MPL policy which operates at
the peak efficiency point K∗). Let γ0 be the average cost
(in our case the mean number of jobs in the system) of this
policy. We then define the differential cost function h0(·)
associated with each state, where h0(si) denotes the differ-
ential cost to reach some state s0 starting in state si under
π0. That is, h0(si) denotes the difference between the mean
total cost to reach state s0, and the product of γ0 and the
mean total time to reach state s0, given that we start in
state si. The vector of differential costs, h0(·), and the av-
erage cost, γ0, are obtained by solving the following linear
system of equations:

h0(s0) = 0

h0(si) = c(si)τ(si)− γ0τ(si) +
X

j

pij(π
0(si))h(sj)

where τ(si) is the mean residence time in state si, c(si) is the
cost per unit of time in state si, and pij(π

0(si)) represents
the probability that we transition from state si to sj when
control π0(si) is applied in state si. This is called the policy
evaluation step. We then perform the policy improvement
step to obtain the policy π1. To do this, for each state si,
we choose π1(si) as the control which satisfies:

c(si)τ(si)− γ0τ(si) +
X

j

pij(π
1(si))h(sj)

= min
a∈Ai

"
c(si)τ(si)− γ0τ(si) +

X
j

pij(a)h(sj)

#

where Ai is the set of possible actions in state i. We then
keep performing policy evaluation and improvement until
two consecutive policies are the same, or have the same av-
erage cost.

The policy iteration step can be easily performed once the
policy evaluation step is performed. The policy evaluation
step is clearly tractable when the state space is finite. We
now show it is also tractable when the state space is infinite
but repeating, obeying the conditions for Matrix-Geometric
analysis. In the remaining section, we focus on the procedure
for performing the policy evaluation step for such infinite
state space systems, and specializing it to the problem of
solving the optimal dynamic MPL control problem.

Consider a fixed policy π, and let P π denote the proba-
bility transition matrix:

P π =

2
6664

L0 F0 0 0 0 · · ·
B0 L F 0 0 · · ·
0 B L F 0 · · ·

...
...

3
7775

Let h0 be the vector of differential costs for the 0th (non-
repeating) level, hi (i ≥ 1) be the differential cost vector
for the ith (repeating) level of the state space, and γ be the
average cost under policy π. Denote by R the rate matrix
(for the embedded chain) which is the least non-negative
solution to:

R = F + RL + R2B



Let G be the solution to the following equation:

G = B + LG + FG2

We now note that G and R have the following probabilistic
interpretations [18]: by conditioning on the first transition,
it is easy to see that G(j, k) denotes the conditional proba-
bility that the chain eventually reaches level i − 1 and the
state it enters is (i − 1, k), given the chain starts in state
(i, j). Similarly, conditioning on the last transition before
visiting (i + 1, k), one can see that the entry R(j, k) repre-
sents the mean number of visits to state (i + 1, k) until it
first enters level i again, given that the chain starts in state
(i, j). Let J be given by:

J = L + FG

Then J(j, k) represents the conditional probability that the
chain enters level i again before entering level i − 1, and
that the state it enters is (i, k), given the chain starts in
state (i, j). We can now write the differential cost of some
state (i, j) for i ≥ 2 as

h(i, j) = c(i, j)τ(i, j)− γτ(i, j) +
X

k

B(j, k)h(i− 1, k)

+
X

k

J(j, k)h(i, k)

+

∞X
m=1

X
k

Rm(j, k) [c(i + m, k)τ(i + m, k)− γτ(i + m, k)]

or,

hi = diag(τ i)ci − γ.τ i + Bhi−1 + Jhi

+

∞X
m=1

Rm(diag(τ i+m)ci+m − γτ i+m) . . . i ≥ 2 (15)

where ci is the column vector of cost per unit of time for
states in level i, and τ i is the column vector of mean resi-
dence time for states in level i. Thus,

hi = (I − J)−1 (diag(τ i)ci − γτ i + Bhi−1

+

∞X
m=1

Rm(diag(τ i+m)ci+m − γτ i+m)

!

Thus, we can express h2 in terms of h1 and solve for h0 and
h1. We can then obtain subsequent cost vectors as needed
while performing the policy improvement step.

We now address the problem of evaluating a dynamic
MPL control policy, π. Let K+ denote the maximum MPL
used by policy π and let Q∗ denote the queue length beyond
which policy π uses the MPL K∗ (see Figure 6). For compu-
tational reasons we restrict Q∗ to be at most 50. As stated
earlier, in our case, the matrix B is of rank 1. Specifically,
we can write B = ν · α, where ν = e1 (the column vector
with first entry 1, and rest 0), and α = [(1 − q) q 0 . . . 0].
Therefore, in our case the matrices G and R have an explicit
solution [20]:

G = e ·α
R = F (I − L− Feα)−1

where e is the column vector of all 1s.

Denote by si the state vector for level i, i ≥ 1 :

si =

2
6664

(Q∗ + i− 1, K∗ − 1, ?)
(Q∗ + i− 1, K∗)

...
(Q∗ + i− 1, K+)

3
7775

with the cost and mean residence time vectors given by ci =
(Q∗ + i− 1) · e + K and

τ i =

2
6664

0
1

λ+q·µ(K∗)

...
1

λ+q·µ(K+)

3
7775 = τ , K =

2
6664

K∗ − 1
K∗

...
K+

3
7775

We can thus simplify (15) to:

hi = diag(τ )ci − γτ + Bhi−1 + Jhi

+

∞X
m=1

Rm(diag(τ )ci+m − γτ ) (16)

= Bhi−1 + Jhi +
�
(I −R)−1 ((Q∗ + i− 2− γ).τ

+diag(τ ) ·K) +
�
(I −R)−1�2 τ

i
or,

hi = (I − J)−1 �Bhi−1 +
�
(I −R)−1 ((Q∗ + i− 2− γ).τ

+diag(τ )K) +
�
(I −R)−1�2 τ

io
(17)

Thus, the solution of our system is given by the following
system of linear equations for h0,h1, γ:

h0 = diag(τ 0)c0 − γτ 0 + L0h0 + F0h1 (18)

h1 = diag(τ )c1 − γτ + B0h0 + Lh1 + Fh2

= diag(τ )c1 − γ(I + F (I − J)−1(I −R)−1)τ + B0h0

+ (L + F (I − J)−1B)h1 + F (I − J)−1 ��(I −R)−1 (Q∗.τ

+diag(τ )K) +
�
(I −R)−1�2 τ

io
(19)

and the additional constraint h(0, 0) = 0.
In the method of policy iteration, the policy evaluation

and policy improvement steps are repeated until two poli-
cies with the same cost are obtained. In the experiments
presented in this paper, we stopped when the relative im-
provement between consecutive policies was below 0.01%,
which took at most 7 iterations in each case (less than 30
seconds on a Pentium 4 CPU with 1 GB of memory).
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